Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing family for the holidays? Scientists discover how the stress might kill you

30.11.2009
New research in the Journal of Leukocyte Biology shows the link between the nervous and immune systems and how breaking that link might lead to new treatments for a wide range of autoimmune disorders

If you ever thought the stress of seeing your extended family over the holidays was slowly killing you—bad news: a new research report in the December 2009 print issue of the Journal of Leukocyte Biology (http://www.jleukbio.org) shows that you might be right.

Here's the good news: results from the same study might lead to entirely new treatments that help keep autoimmune diseases like lupus, arthritis, and eczema under control. That's because researchers from the University of Connecticut Health Center have found that the same part of our nervous system that is responsible for the fight-or-flight response (called the sympathetic nervous system) also controls regulatory T cells, which are used by the body to end an immune response once a foreign invader has been removed or destroyed.

"We show for the first time that the nervous system controls the central immune police cells, called regulatory T cells," said Robert E. Cone, Ph.D., a senior researcher in whose laboratory the work was done at the University of Connecticut Health Center. "This further shows that it is imperative to concentrate on the neuro-immune interactions and to understand how these two different systems, the immune and nervous systems, interact."

To make this discovery, Cone, Sourojit Bhowmick and colleagues injected some mice with a drug called 6-hyroxydopamine (6-OHDA) that selectively removes sympathetic nerves located in different organs, or a saline solution. Mice injected with 6-OHDA, which effectively severed the link between the nervous system and the immune system had twice as many regulatory T cells as the control group in their spleens and lymph nodes. Further analysis showed that the increase in regulatory T cells resulted from an increase in a protein called "TGF-beta," which directs the development and survival of regulatory T cells. With this information in hand, Cone and colleagues then sought to see if 6-OHDA would prevent autoimmune disorders from developing. To do this, they injected 6-OHDA or a saline solution into mice before subjecting them and a control group to conditions known to cause an autoimmune disease similar to multiple sclerosis in humans. Unlike the control group, the mice treated with 6-OHDA did not develop the autoimmune disease, showing that not only can the sympathetic nervous system negatively affect the immune system, but it also shows how it might be possible to prevent or stop autoimmune disorders.

"Ever since Hans Seyle's groundbreaking work on stress, scientists have been trying to understand why stressful situations often exacerbate autoimmune diseases and cause re-emergence of latent infections," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "In true fight or flight situations, stress can be a lifesaver, but understanding how the neurological response to the stress of everyday events such as seeing your family around the holidays impacts immune responses should provide opportunities for new therapies."

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Sourojit Bhowmick, Anurag Singh, Richard A. Flavell, Robert B. Clark, James O'Rourke, and Robert E. Cone. The sympathetic nervous system modulates CD4+FoxP3+ regulatory T cells via a TGF-â-dependent mechanism. J Leukoc Biol 2009 86: 1275�. doi: 10.1189/jlb.0209107 ; http://www.jleukbio.org/cgi/content/abstract/86/6/1275

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>