Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the family

09.08.2010
Modifying a familiar class of dye molecules with optically active carbon rings creates new possibilities for light-based medical therapies

A new family of molecules, termed ‘azuleneocyanines’, that can absorb large amounts of near-infrared light—a critical part of the electromagnetic spectrum—has been synthesized by Atsuya Muranaka, Mitsuhiro Yonehara and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako1. The work has the potential to advance medical imaging and photodynamic cancer treatments because near-infrared light can penetrate deep into human tissue with little loss of intensity.

The key to the team’s approach is a group of large, cyclic organic molecules known as porphyrins. The numerous carbon- and nitrogen-based double bonds found within these molecules make them extremely sensitive to light radiation and therefore intensely colored. Beginning in the early 20th century, chemists began to alter porphyrin structures to create the class of pigments called phthalocyanines (Fig. 1), which have emerged as important dyes owing to their stability under intense heat and light conditions.

Although many phthalocyanines can absorb near-infrared light with wavelengths between 700 and 800 nanometers, prospective medical applications require dye compounds with enhanced activity in the 700–1100 nanometer region—the so-called ‘optical window’. To meet this challenge, Muranaka and colleagues synthesized a new dye that incorporates azulene—an aromatic molecule containing fused five- and seven-membered hydrocarbon rings—into the phthalocyanine framework. Azulene’s unusual structure gives it unique electron-accepting characteristics that the researchers suspected would lead to an improved dye material.

In their synthesis, the researchers first added cyanide groups to the seven-membered ring of azulene, and then attached two butyl chains to its pentagonal component to improve the product’s solubility. Finally, they linked four modified azulene units together to form the cyclic azuleneocyanine complex—a troublesome process, according to Muranaka, because several hard-to-distinguish structural isomers were produced during the cyclization reaction.

The effort required to produce azuleneocyanine paid off when the researchers observed this compound could absorb intense amounts of light in the optical window region—behavior distinct from other phthalocyanines and the azulene precursor. Theoretical calculations revealed that the seven-membered ring of azulene lowered the energy barrier for electron absorption in the complex, leading to the unprecedented near-infrared activity.

While the high stability and strong absorption capabilities of azuleneocyanine promise to be a boon for near-infrared applications, the researchers also take great pride in the discovery and christening of this molecular family. “Chemists have great enthusiasm for naming molecules,” says Muranaka, “and it’s really exciting for us to name a new class of compounds that we created.”

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute

Journal information

1. Muranaka, A., Yonehara, M. & Uchiyama, M. Azuleneocyanine: A new family of phtalocyanines with intense near-IR absorption. Journal of the American Chemical Society 132, 7844–7845 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6354
http://www.researchsea.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>