Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Factor in keeping “good order” of genes and preventing disease discovered by Hebrew University, Swiss scientists

04.10.2011
A factor that is crucial for the proper positioning of genes in the cell nucleus has been discovered by a team of researchers from the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem and the Friedrich Miescher Institute for Biomedical Research in Basel, Switzerland.

The researchers found that the lamin filamentous network is an essential element in this proper positioning, the lack of which can cause specific diseases. Lamin proteins make filaments that are located mainly at the periphery of the cell nucleus, which stores and transcribes genetic material in all living matter. The lamins maintain the nuclear shape and help organize chromosomes.

Mutations in the genes that encode lamin proteins cause 14 different diseases in man, collectively termed laminopathies. These include early aging diseases and diseases that affect peripheral neurons, heart, skin, bones and muscles.

One of the muscle diseases caused by dominant mutations in the gene encoding lamin A is Emery-Dreifuss muscular dystrophy (AD-EDMD). It is characterized by weakening in certain skeletal muscles and early contractures at the neck, elbows and Achilles tendons, as well as cardiac conduction defects. How these mutations lead to the disease was largely unknown.

By manipulating the lamin gene in the worm Caenorhabditis elegans, Prof. Yosef Gruenbaum of the Hebrew University of Jerusalem and his students Anna Mattout and Erin Bank, together with Prof. Susan Gasser of the Friedrich Miescher Institute for Biomedical Research and her students Brietta Pike, Benjamin Towbin, Adriana Gonzalez and Peter Meister were able to show that lamin is necessary for the positioning of regions in the DNA that is mostly inactive (heterochromatin).

They then introduced low levels of a lamin carrying a mutation, which in humans causes AD-EDMD, into the worms and tracked their expression. In the worms expressing the mutant lamin, they detected abnormal retention of a muscle-specific gene array at the nuclear periphery. (The effect of the mutation was specific to muscle and had no effect on other cells.) The animals expressing the mutant lamin had selectively perturbed structure of body muscle and reduced muscle function, which resemble the situation in human patients.

One important conclusion of this study, which appears in the latest online edition of the journal Current Biology, is that lamin filaments help arrange silent genes at the nuclear periphery and – during normal tissue-specific activation -- allow release of the activated normal gene.

Another conclusion is that a disease-linked local mutation in lamin can impair muscle-specific reorganization of genes during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction typifies, for example, Emery Dreifuss Muscular Dystrophy.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904. Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>