Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Factor in keeping “good order” of genes and preventing disease discovered by Hebrew University, Swiss scientists

04.10.2011
A factor that is crucial for the proper positioning of genes in the cell nucleus has been discovered by a team of researchers from the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem and the Friedrich Miescher Institute for Biomedical Research in Basel, Switzerland.

The researchers found that the lamin filamentous network is an essential element in this proper positioning, the lack of which can cause specific diseases. Lamin proteins make filaments that are located mainly at the periphery of the cell nucleus, which stores and transcribes genetic material in all living matter. The lamins maintain the nuclear shape and help organize chromosomes.

Mutations in the genes that encode lamin proteins cause 14 different diseases in man, collectively termed laminopathies. These include early aging diseases and diseases that affect peripheral neurons, heart, skin, bones and muscles.

One of the muscle diseases caused by dominant mutations in the gene encoding lamin A is Emery-Dreifuss muscular dystrophy (AD-EDMD). It is characterized by weakening in certain skeletal muscles and early contractures at the neck, elbows and Achilles tendons, as well as cardiac conduction defects. How these mutations lead to the disease was largely unknown.

By manipulating the lamin gene in the worm Caenorhabditis elegans, Prof. Yosef Gruenbaum of the Hebrew University of Jerusalem and his students Anna Mattout and Erin Bank, together with Prof. Susan Gasser of the Friedrich Miescher Institute for Biomedical Research and her students Brietta Pike, Benjamin Towbin, Adriana Gonzalez and Peter Meister were able to show that lamin is necessary for the positioning of regions in the DNA that is mostly inactive (heterochromatin).

They then introduced low levels of a lamin carrying a mutation, which in humans causes AD-EDMD, into the worms and tracked their expression. In the worms expressing the mutant lamin, they detected abnormal retention of a muscle-specific gene array at the nuclear periphery. (The effect of the mutation was specific to muscle and had no effect on other cells.) The animals expressing the mutant lamin had selectively perturbed structure of body muscle and reduced muscle function, which resemble the situation in human patients.

One important conclusion of this study, which appears in the latest online edition of the journal Current Biology, is that lamin filaments help arrange silent genes at the nuclear periphery and – during normal tissue-specific activation -- allow release of the activated normal gene.

Another conclusion is that a disease-linked local mutation in lamin can impair muscle-specific reorganization of genes during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction typifies, for example, Emery Dreifuss Muscular Dystrophy.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904. Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>