Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facial defects shown to self-repair

26.04.2012
Study shows developing organisms can identify and fix abnormalities in head and face

Developmental biologists at Tufts University have identified a "self-correcting" mechanism by which developing organisms recognize and repair head and facial abnormalities. This is the first time that such a mechanism has been reported for the face and the first time that this kind of flexible, corrective process has been rigorously analyzed through mathematical modeling.


Developmental biologists at Tufts University have identified a "self-correcting" mechanism by which developing organisms recognize and repair head and facial abnormalities. The research, reported in the May 2012 issue of the journal Developmental Dynamics, used a tadpole model to show that developing organisms are not genetically "hard-wired" with a set of pre-determined cell movements that result in normal facial features. Instead, the study shows that cell groups are able to measure their shape and position relative to other organs and perform the movements and remodeling needed to compensate for significant patterning abnormalities. Here three abnormal facial structures on the right side of a tadpole self-repair over time. On days 9 to 23, the branchial arch, or gill, (arrowhead) is almost flat rather than displaying the expected curvature, the right side of the jaw (arrow) is deformed, and the right eye is out of position and displays a "chocolate kiss" shape. By day 131-170, the branchial arch has become curved, the jaw displays the expected "U" shape and the right eye has moved up to align with the left eye and has a more rounded shape.

Credit: Tufts Center for Regenerative and Developmental Biology

The research, reported in the May 2012 issue of the journal Developmental Dynamics, used a tadpole model to show that developing organisms are not genetically "hard-wired" with a set of pre-determined cell movements that result in normal facial features. Instead, the process of development is more adaptive and robust. Cell groups are able to measure their shape and position relative to other organs and perform the movements and remodeling needed to compensate for significant patterning abnormalities, the study shows.

"A big question has always been, how do complex shapes like the face or the whole embryo put themselves together? We have found that when we created defects in the face experimentally, facial structures move around in various ways and mostly end up in their correct positions," said Michael Levin, Ph.D., senior author on the paper and director of the Center for Regenerative and Developmental Biology in Tufts University's School of Arts and Sciences. "This suggests that what the genome encodes ultimately is a set of dynamic, flexible behaviors by which the cells are able to make adjustments to build specific complex structures. If we could learn how to bioengineer systems that reliably self-assembled and repaired deviations from the desired target shape, regenerative medicine, robotics, and even space exploration would be transformed."

Previous research had found self-correcting mechanisms in other embryonic processes — though never in the face — but such mechanisms had not been mathematically analyzed to understand the precise dynamics of the corrective process.

"What was missing from previous studies — and to our knowledge had never been done in an animal model — was to precisely track those changes over time and quantitatively compare them," said first author Laura Vandenberg, Ph.D., post-doctoral associate at the Center for Regenerative and Developmental Biology. Such an analysis is crucial in order to begin to understand what information is being generated and manipulated in order for a complex structure to rearrange and repair itself.

Co-author with Levin and Vandenberg was Dany S. Adams, Ph.D. Adams is a research associate professor in the Department of Biology and a member of the center.

The Tufts biologists induced craniofacial defects in Xenopus frog embryos by injecting specific mRNA into one cell at the two-cell stage of development; this resulted in abnormal structures on one side of the embryos. They then characterized changes in the shape and position of the craniofacial structures, such as jaws, branchial arches, eyes, otic capsules and olfactory pits, through "geometric morphometric analysis," which measured positioning of a total of 32 landmarks on the top and bottom sides of the tadpoles.

Images of tadpoles taken at precise intervals showed that as they aged, the craniofacial abnormalities, or perturbations, became less apparent. This was particularly true for the jaws and branchial arches. Eye and nose tissue became more normal over time but varied in ability to achieve a completely expected shape and position.

Changes in the shape and position of facial features are a normal part of development, as any baby animal shows. With age, faces elongate and eyes, nose and jaws move relative to each other. But the movement is normally slight.

In contrast, the Tufts research team found that in tadpoles with severe malformations, the facial structures shifted dramatically in order to repair those malformations. It was, the researchers said, as if the system were able to recognize departures from the normal state and undertake corrective action that would not typically take place.

"We were quite astounded to see that, long before they underwent metamorphosis and became frogs, these tadpoles had normal looking faces. Imagine the implications of an animal with a severe 'birth defect' that, with time alone, can correct that defect," said Vandenberg.

Information Exchange Process

These results, say the Tufts biologists, are consistent with an information exchange process in which a structure triangulates its distance and angle from a stable reference point. While further study is needed, the researchers propose that "pings" (information-containing signals) are exchanged between an "organizing center" — such as the brain and neural network — and individual craniofacial structures.

The article points out that congenital malformations of craniofacial structures comprise a significant class of birth defects such as cleft lip, cleft palate and microphthalmia, affecting more than 1 in every 600 births. Demystifying the "face-fixing" mechanism by further research at the molecular level could inspire new approaches to correcting birth defects in humans.

"Such understanding would have huge implications not only for repairing birth defects, but also for other areas of systems biology and complexity science. It could help us build hybrid bioengineered systems, for synthetic or regenerative biology, or entirely artificial robotic systems that can repair themselves after damage or reconfigure their own structure to match changing needs in a complex environment," said Levin.

Work was supported by a National Research Service Award and funding from the National Institutes of Health and the G. Harold and Leila Y. Mathers Charitable Foundation.

Vandenberg, L. N., Adams, D. S. and Levin, M. (2012), Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Dev. Dyn., 241: 863-878. doi: 10.1002/dvdy.23770

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New candidate for raw material synthesis through gene transfer
03.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Moss protein corrects genetic defects of other plants

03.07.2020 | Life Sciences

Typhoon changed earthquake patterns

03.07.2020 | Earth Sciences

New candidate for raw material synthesis through gene transfer

03.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>