Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018

Researchers saw increases in the size and number of fat cells in laboratory models following exposure, even at diluted concentrations.

Exposure to fracking chemicals and wastewater promotes fat cell development, or adipogenesis, in living cells in a laboratory, according to a new Duke University-led study.


Duke scientists used cells in culture to test samples of fracking wastewater and contaminated surface water. On the left, a drug called rosiglitazone is known to create fat cells and cause weight gain. On the right, diluted fracking wastewater. Yellow marks accumulation of fat within cells. Blue marks new fat cells being created.

Credit: Chris Kassotis, Duke University

Researchers observed increases in both the size and number of fat cells after exposing living mouse cells in a dish to a mixture of 23 commonly used fracking chemicals. They also observed these effects after exposing the cells to samples of wastewater from fracked oil and gas wells and surface water believed to be contaminated with the wastewater. The findings appear June 21 in Science of the Total Environment.

"We saw significant fat cell proliferation and lipid accumulation, even when wastewater samples were diluted 1,000-fold from their raw state and when wastewater-affected surface water samples were diluted 25-fold," said Chris Kassotis, a postdoctoral research associate at Duke's Nicholas School of the Environment, who led the study.

"Rather than needing to concentrate the samples to detect effects, we diluted them and still detected the effects," he said.

Previous lab studies by Kassotis and his colleagues have shown that rodents exposed during gestation to the mix of 23 fracking chemicals are more likely to experience metabolic, reproductive and developmental health impacts, including increased weight gain.

Kassotis said further research will be needed to assess whether similar effects occur in humans or animals who drink or come into physical contact with affected surface waters outside the laboratory.

More than 1,000 different chemicals are used for hydraulic fracturing across the United States, many of which have been demonstrated through laboratory testing to act as endocrine disrupting chemicals in both cell and animal models.

To conduct this study, Kassotis and colleagues collected samples of fracking wastewater and wastewater-contaminated surface water near unconventional (aka, fracked) oil and gas production sites in Garfield County, Colorado, and Fayette County, West Virginia, in 2014.

Laboratory cultures of mouse cells were then exposed to these waters at varying concentrations or dilutions over a two-week period. The researchers measured how fat cell development in the cultures was affected. They performed similar tests exposing cell models to a mix of 23 fracking chemicals.

Within each experiment, other cells were exposed to rosiglitazone, a pharmaceutical known to be highly effective at activating fat cell differentiation and causing weight gain in humans.

The results showed that the 23-chemical mix induced about 60 percent as much fat accumulation as the potent pharmaceutical; the diluted wastewater samples induced about 80 percent as much; and the diluted surface water samples induced about 40 percent as much.

In all three cases, the number of pre-adipocytes, or precursor fat cells, that developed was much greater in cell models exposed to the chemicals or water samples than in those exposed to the rosiglitazone.

The tests also provided insights into the mechanisms that might be driving these effects.

"Activation of the hormone receptor PPAR-gamma, often called the master regulator of fat cell differentiation, occurred in some samples, while in other samples different mechanisms such as inhibition of the thyroid or androgen receptor, seemed to be in play," Kassotis explained.

###

Susan Nagel of the University of Missouri and Heather Stapleton of Duke's Nicholas School co-authored the new study with Kassotis.

Primary funding came from the National Institute for Environmental Health Sciences. Additional funding came from the University of Missouri, a crowdfunding campaign via Experiment.com, and an EPA 520 STAR Fellowship Assistance Agreement.

CITATION: "Unconventional Oil and Gas Chemicals and Wastewater-Impacted Water Samples Promote Adipogenesis via PPARγ-Dependent and Independent Mechanisms in 3T3-L1 Cells," Christopher D. Kassotis, Susan C. Nagel and Heather M. Stapleton; Science of the Total Environment, June 21, 2018. DOI: 10.1016/j.scitotenv.2018.05.030

Media Contact

Tim Lucas
tdlucas@duke.edu
919-613-8084

 @DukeU

http://www.duke.edu 

Tim Lucas | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scitotenv.2018.05.030

More articles from Life Sciences:

nachricht New image of a cancer-related enzyme in action helps explain gene regulation
05.06.2020 | Penn State

nachricht Protecting the Neuronal Architecture
05.06.2020 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>