Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental immune-boosting drug worsens TB in mice

13.04.2010
An experimental drug that boosts production of the immune system protein interferon worsens tuberculosis (TB) in mice, according to scientists from the National Institutes of Health.

The drug acts indirectly by drawing certain immune cells, in which Mycobacterium tuberculosis (M.tb) bacteria thrive, to the lungs. The findings may have potential implications for the care of people infected with TB, the authors note. The research is reported in the May 3 issue of Journal of Clinical Investigation, now available online.

"Although our research was conducted in mice, our combined findings suggest that reactivation of TB should be considered as a potential side effect if compounds that boost type I interferon production, like the one used in this study, are tested in people who may be infected with M.tb," says Alan Sher, Ph.D., of the National Institute of Allergy and Infectious Diseases (NIAID), NIH, who led the team of scientists.

Most people infected with M.tb do not develop active TB. Instead, the infection remains dormant, often for decades. Eventually, about 10 percent of people with latent infection do go on to develop active disease. Common triggers for reactivation include aging or other conditions that lower immunity.

Dr. Sher and his colleagues studied the effects of an experimental drug called poly-ICLC on immune responses to TB infection. Poly-ICLC stimulates the body to produce a potent immune system protein called type I interferon (type I IFN). Interferon was named for its ability to interfere with viral infections. Synthetic IFN is used to treat hepatitis B and C virus infections, as well as certain kinds of cancers.

In mouse studies, poly-ICLC protected the animals from viruses that can cause lethal infections, including pandemic influenza and SARS. It has also been shown to enhance the effects of several experimental vaccines when tested in animals. Poly-ICLC also is being tested in multiple human clinical trials as a possible cancer treatment when combined with cancer vaccines.

Earlier research into the effects of type I IFN on bacterial infections produced mixed results, notes Dr. Sher. Some studies showed that giving IFN to mice with non-tuberculous mycobacterial infections (Mycobacterium avium) lowered the amount of bacteria in their bodies. But in other studies, naturally occurring IFN appeared to promote rather than limit the growth of bacteria in mice infected with M.tb.

To sort out the mixed findings, NIAID investigator Lis R.V. Antonelli, Ph.D., dropped poly-ICLC into the noses of mice that had been infected with M.tb. The mice were infected either one day earlier to mimic an acute TB infection, or four months earlier to simulate a chronic TB infection. They were then compared with TB-infected, untreated mice. All the mice treated with poly-ICLC developed severe lung tissue damage. Moreover, levels of M.tb in their lungs were 100 times greater than in M.tb-infected mice that did not receive poly-ICLC.

Next, Dr. Antonelli performed a series of experiments to determine what kind of immune system cell was involved in hastening the disease in poly-ICLC-treated mice. Again, they compared poly-ICLC treated and untreated, M.tb-infected mice. In the treated group, the scientists found a fourfold increase in a specific subpopulation of immune cells called macrophages. In most infectious diseases, macrophages are drawn to the site of infection and help defend the host against disease. But when type I IFN production was elevated by poly-ICLC treatment, the surge in macrophages to the M.tb-infected lung actually harmed the host, notes Dr. Sher. TB bacteria live inside macrophages, and the specific subset detected in these experiments appears especially hospitable to M.tb.

Dr. Sher and his colleagues are currently testing the relevance of these findings to humans by determining whether under certain conditions type I IFN promotes the growth of M.tb in human macrophages. Such research could also provide important clues to exactly how and under what conditions latent TB is reactivated.

Dr. Antonelli, who was based at NIAID when the research was conducted, now works at Fiocruz, a government-sponsored research institute in Belo Horizonte, Brazil.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: LRV Antonelli et al. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. Journal of Clinical Investigation DOI: 10.1172/JCI40817 (2010).

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>