Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experience Leads to the Growth of New Brain Cells: A new study examines how individuality develops

10.05.2013
How do organisms evolve into individuals that are distinguished from others by their own personal brain structure and behavior?

Scientists in Dresden, Berlin, Münster, and Saarbrücken have now taken a decisive step towards clarifying this question. Using mice as an animal model, they were able to show that individual experiences influence the development of new neurons, leading to measurable changes in the brain. The results of this study are published in Science on May 10th.

The DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence at the TU Dresden (CRTD), the Dresden site of the German Center for Neurodegenerative Diseases (DZNE), and the Max Planck Institute for Human Development in Berlin played a pivotal role in the study.

The adult brain continues to grow with the challenges that it faces; its changes are linked to the development of personality and behavior. But what is the link between individual experience and brain structure? Why do identical twins not resemble each other perfectly even when they grew up together? To shed light on these questions, the scientists observed forty genetically identical mice that were kept in an enclosure offering a large variety of activity and exploration options.

“The animals were not only genetically identical, they were also living in the same environment,” explains principal investigator Gerd Kempermann, Professor for Genomics of Regeneration, CRTD, and Site Speaker of the DZNE in Dresden. “However, this environment was so rich that each mouse gathered its own individual experiences in it. Over time, the animals therefore increasingly differed in their realm of experience and behavior.”

New neurons for individualized brains

Each of the mice was equipped with a special micro-chip emitting electromagnetic signals. This allowed the scientists to construct the mice’s movement profiles and to quantify their exploratory behavior. The result: Despite a common environment and identical genes the mice showed highly individualized behavioral patterns. They reacted to their environment differently. In the course of the three-month experiment these differences increased in size.

“Though the animals shared the same life space, they increasingly differed in their activity levels. These differences were associated with differences in the generation of new neurons in the hippocampus, a region of the brain that supports learning and memory,” says Kempermann. “Animals that explored the environment to a greater degree also grew more new neurons than animals that were more passive.”

Adult neurogenesis, that is, the generation of new neurons in the hippocampus, allows the brain to react to new information flexibly. With this study, the authors show for the first time that personal experiences and ensuing behavior contribute to the „individualization of the brain.“ The individualization they observed cannot be reduced to differences in environment or genetic makeup.

„Adult neurogenesis also occurs in the hippocampus of humans,” says Kempermann. “Hence we assume that we have tracked down a neurobiological foundation for individuality that also applies to humans.”

Impulses for discussion across disciplines

„The finding that behavior and experience contribute to differences between individuals has implications for debates in psychology, education science, biology, and medicine,“ states Prof. Ulman Lindenberger, Director of the Center for Lifespan Psychology at the Max Planck Institute for Human Development (MPIB) in Berlin. “Our findings show that development itself contributes to differences in adult behavior. This is what many have assumed, but now there is direct neurobiological evidence in support of this claim. Our results suggest that experience influences the aging of the human mind.“

In the study, a control group of animals housed in a relatively unattractive enclosure was also examined; on average, neurogenesis in these animals was lower than in the experimental mice. „When viewed from educational and psychological perspectives, the results of our experiment suggest that an enriched environment fosters the development of individuality,“ comments Lindenberger.

Interdisciplinary teamwork

The study is also an example of multidisciplinary cooperation — it was made possible because neuroscientists, ethologists, computer scientists, and developmental psychologists collaborated closely in designing the experimental set-up and applying new data analysis methods. Biologist Julia Freund from the CRTD Dresden and computer scientist Dr. Andreas Brandmaier from the MPIB in Berlin share first authorship on the article. In addition to the DZNE, CRTD, and the MPIB, the German Research Center for Artificial Intelligence in Saarbrücken and the Institute for Geoinformatics and the Department of Behavioural Biology at the University of Münster were also involved in this project.

Original publication
„Emergence of Individuality in Genetically Identical Mice”, Julia Freund, Andreas M. Brandmaier, Lars Lewejohann, Imke Kirste, Mareike Kritzler, Antonio Krüger, Norbert Sachser, Ulman Lindenberger, Gerd Kempermann, Science, doi: http://www.sciencemag.org/lookup/doi/10.1126/science.1235294
The Center for Regenerative Therapies Dresden – CRTD at the Technische Universität Dresden was established in 2006 and was able to assert itself in the third round of the German excellence initiative as an excellence cluster and DFG Research Center. It is directed by the developmental and neurobiologist Prof. Dr. Michael Brand. The aim of the CRTD is to study the body’s self-healing capabilites and develop completely new regenerative therapies for previously incurable diseases. The Center’s research topics focus on haematology and immunology, diabetes, neurodegenerative diseases, and bone replacement. Currently four professors and nine research group leaders work at the CRTD and are integrated in an interdisciplinary network of more than 90 members of seven different institutions in Dresden. The network is additionally supported by 18 corporate partners. Synergies within the network allow a rapid transfer of findings from basic science to clinical applications. Website: http://www.crt-dresden.de

Das Max Planck Institute for Human Development (MPIB) was founded in 1963 in Berlin. As an interdiciplinary research institution, it is devoted to the study of human development and education. The institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe. Website: http://www.mpib-berlin.mpg.de/de
The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Website: http://www.dzne.de/en

Press contact

Prof. Dr. Gerd Kempermann
CRTD Research Group Leader & Site Speaker of DZNE Dresden
Tel.: +49-351/458-82201
E-Mail: gerd.kempermann@dzne.de

Prof. Dr. Ulman Lindenberger
Director of the Center for Lifespan Psychology
Max Planck Institute for Human Development, Berlin
Tel.: +49-30/82406-572
E-Mail: seklindenberger@mpib-berlin.mpg.de

Prof. Dr. Norbert Sachser
Department of Behavioural Biology
University of Münster
Tel.: +49-251/83-23884
E-Mail: sachser@uni-muenster.de

Birte Urban-Eicheler
Press and Public Relations
CRTD, Dresden
Tel.: +49-351/458-82065
E-Mail: birte.urban@crt-dresden.de

Dr. Dirk Förger
Head of Press and Public Relations
DZNE, Bonn
Tel.: +49-228/43302-260
E-Mail: dirk.foerger@dzne.de

Dr. Britta Grigull
Head of Press and Public Relations
Max Planck Institute for Human Development, Berlin
Tel.: +49-30/824 06-211
E-Mail: grigull@mpib-berlin.mpg.de

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en/about-us/public-relations/meldungen/2013/press-release-no-13.html

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>