Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanded Blueprint

16.04.2010
Genetic incorporation of two different noncanonic amino acids into one protein

The genetic code includes information for only 20 amino acids (AAs). If this repertoire could be expanded, it would, for example, be possible to program bacteria to produce tailored proteins with various characteristics of interest to science, technology, or medicine.

In fact, the natural protein-production mechanism can be reprogrammed, but until now it has only been possible to incorporate a single new type of AA into a protein. Wenshe Liu and his co-workers at Texas A&M University (USA) have now successfully included two different, noncanonic amino acids into the genetic material of bacteria, as they report in the journal Angewandte Chemie.

In order to synthesize a protein, a cell first copies a “blueprint” (mRNA) from the corresponding gene and “reads” it (translation). The genetic code for every AA consists of three “letters” (nucleotides). In addition, there is a start codon and three different codons that mean “stop”. “Transporters” (tRNA) that specifically recognize the codons are loaded with the required AA and bring it to the place where protein synthesis occurs (ribosomes). The “loaders” are special enzymes (aminoacyl tRNA synthetases).

Only 20 AAs are naturally coded; these are known as the canonical AAs. Other AAs are made accessible to organisms by modification of individual AAs in the finished protein at a later stage. However, some bacteria that require an unusual AA as part of an enzyme used in their metabolism of methane use one of their stop codons (amber) for another purpose, so it functions as a codon for the additional AA. This method has previously been successfully emulated in the laboratory. Liu and his teams have now for the first time used two such bacterial systems in parallel. One of the tRNAs was mutated to recognize a different stop codon (ochre). By mutation, they were able to reprogram the associated aminoacyl tRNA synthetases so that they load up their tRNAs with the desired synthetic AA.

The researchers incorporated this altered genetic material into bacterial cells. As desired, these cells then incorporated two noncanonical AAs into one protein. These two AAs are constructed so that each has a specific “snap” where desired functional groups can later simply be “clicked on” (click chemistry). For example, it is possible to attach special pairs of molecules that fluoresce when they can exchange energy with each other. To do this, they must be at a specific distance and angle relative to each other. Such pairs make it possible to draw conclusions about the conformation of a protein, as well as its dynamic changes during a reaction.

Author: Wenshe Liu, Texas A&M University, College Station (USA), http://www.chem.tamu.edu/rgroup/liu/contact.html

Title: A Facile System for Genetic Incorporation of Two Different Noncanonical Amino Acids into One Protein in Escherichia coli

Angewandte Chemie International Edition 2010, 49, No. 18, 3211–3214, Permalink to the article: http://dx.doi.org/10.1002/anie.201000465

Wenshe Liu | Angewandte Chemie
Further information:
http://www.chem.tamu.edu/rgroup/liu/contact.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>