Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole exome sequencing identifies cause of metabolic disease

06.02.2012
Sequencing a patient’s entire genome to discover the source of his or her disease is not routine – yet. But geneticists are getting close.
A case report, published this week in the American Journal of Human Genetics, shows how researchers can combine a simple blood test with an “executive summary” scan of the genome to diagnose a type of severe metabolic disease.

Researchers at Emory University School of Medicine and Sanford-Burnham Medical Research Institute used “whole-exome sequencing” to find the mutations causing a glycosylation disorder in a boy born in 2004. Mutations in the gene (called DDOST) that is responsible for the boy’s disease had not been previously seen in other cases of glycosylation disorders.

Whole-exome sequencing is a cheaper, faster, but still efficient strategy for reading the parts of the genome scientists believe are the most important for diagnosing disease. The report illustrates how whole-exome sequencing, which was first offered commercially for clinical diagnosis in 2011, is entering medical practice. Emory Genetics Laboratory is now gearing up to start offering whole exome sequencing as a clinical diagnostic service.

It is estimated that most disease-causing mutations (around 85 percent) are found within the regions of the genome that encode proteins, the workhorse machinery of the cell. Whole-exome sequencing reads only the parts of the human genome that encode proteins, leaving the other 99 percent of the genome unread.

The boy in the case report was identified by Hudson Freeze, PhD and his colleagues. Freeze is director of the Genetic Disease Program at Sanford-Burnham Medical Research Institute. A team led by Madhuri Hegde, PhD, associate professor of human genetics at Emory University School of Medicine and director of the Emory Genetics Laboratory, identified the gene responsible. Postdoctoral fellow Melanie Jones is the first author of the paper.

“This is part of an ongoing effort to develop diagnostic strategies for congenital disorders of glycosylation,” Hegde says. “We have a collaboration with Dr. Freeze to identify new mutations.”

Glycosylation is the process of attaching sugar molecules to proteins that appear on the outside of the cell. Defects in glycosylation can be identified through a relatively simple blood test that detects abnormalities in blood proteins. The sugars are important for cells to send signals and stick to each other properly. Patients with inherited defects in glycosylation have a broad spectrum of medical issues, such as developmental delay, digestive and liver problems and blood clotting defects.

The boy in this case report was developmentally delayed and had digestive problems, vision problems, tremors and blood clotting deficiencies. He did not walk until age 3 and cannot use language. The researchers showed that he had inherited a gene deletion from the father and a genetic misspelling from the mother.
"Over the years, we've come to know many families and their kids with glycosylation disorders. Here we can tell them their boy is a true ‘trail-blazer’ for this new disease,” Freeze said. “Their smiles—that’s our bonus checks."

The researchers went on to show that introducing the healthy version of the DDOST gene into the patient’s cells in the laboratory could restore normal protein glycosylation. Thus, restoring normal function by gene therapy is conceivable, if still experimental. However, restoration of normal glycosylation would be extremely difficult to achieve for most of the existing cells in the body.

The research was supported by the National Institutes of Health and by the Rocket Fund.

Reference: M.A. Jones et al. DDOST Mutations Identified by Whole-Exome Sequencing Are Implicated in Congenital Disorders of Glycosylation, online first, Am. J. Hum. Gen (2012). doi:10.1016/j.ajhg.2011.12.024

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Predicting a protein's behavior from its appearance
11.12.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise
11.12.2019 | Max-Planck-Institut für Polymerforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

One-third of recent global methane increase comes from tropical Africa

11.12.2019 | Earth Sciences

Creating switchable plasmons in plastics

11.12.2019 | Physics and Astronomy

The Antarctic: study from Kiel provides data about the structure of the icy continent

11.12.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>