Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Existing drug could treat aggressive brain cancer

11.09.2019

UGA research shows new use of insulin compound could block tumors

A research team from the University of Georgia's Regenerative Bioscience Center has found that a compound molecule used for drug delivery of insulin could be used to treat glioblastoma, an aggressive, usually fatal form of brain cancer.


Lohitash Karumbaiah.

Credit: UGA

Glioblastoma, also known as GBM, is a fast-growing, web-like tumor that arises from supportive tissue around the brain and resists surgical treatment. Described by some as "sand in grass," GBM cells are hard to remove and tend to reach out in a tentacle-like fashion through surrounding healthy brain tissue.

According to the National Foundation for Cancer Research, more than half of newly diagnosed GBM patients die within the first 15 months. Late U.S. Sens. John McCain and Ted Kennedy both died from GBM, raising national awareness of the deadly disease.

Surfen, a compound molecule first described in 1938, is a pharmaceutical agent used to optimize insulin delivery. The UGA researchers identified that surfen-treated cells were "blocked" from tumor growth, and the spread of tumor cells in the brain.

"This study shows that we can stifle the growth of invasive brain tumors with a compound that has a substantial clinical advantage, and can aid in the reduction or refinement of mainstream treatments, particularly radiation and/or chemo," said Lohitash Karumbaiah, associate professor of regenerative medicine in UGA's College of Agricultural and Environmental Sciences.

Published ahead of print in the FASEB Journal, the study is the first known use of surfen as an application to treat GBM. To test the approach, the research team first used cultured cells to observe binding properties of the surfen compound. Next, they introduced live rodent models with cells that could grow into invasive tumors. The researchers found that surfen-treated animals demonstrated smaller tumors and substantially reduced brain hemorrhage volume than control animals.

"In basic terms, surfen is highly positively charged and will bind to negatively charged things," said Meghan Logun, a graduate student working with Karumbaiah. "Since we study sugars in the brain, which are highly negatively charged, we then asked, 'Why not try using positive charges to block off the negative ones?'"

Logun is studying how brain cancer takes advantage of highly charged elements in brain tissue to aid in invasion. "In the surfen-treated animals, we saw that the tumors were actually much more constrained and had more defined boundaries," she said.

To explore the surfen molecule further, the team worked with Leidong Mao, associate professor in UGA's College of Engineering and co-developer of a microfluidic device used to examine glycosaminoglycans (GAGs)--highly negatively charged molecules produced by brain tumors. Designed to mimic the neural pathways of the brain, the device allows for real-time monitoring of tumor cell adhesion and growth.

"We did not expect to see such a robust response," Mao said. "Blocking off the charged GAGs from the tumor cells really did dampen their ability to invade."

Based on the study's discovery that surfen had isolated the tumor, the team also analyzed MRI images to gauge the treatment's effectiveness.

"In the MRI image you can see [the effects of the surfen treatment] pretty drastically, not in terms of killing the GBM but in blocking its prey," said Qun Zhao, associate professor of physics in the UGA Franklin College of Arts and Sciences and another RBC collaborator on the project. "In the non-treated image, you see rampant invasive growth, compared to the surfen-models where you see a nicely contained and almost circular-shaped tumor."

"The tumor may still grow, but at least now it doesn't have any invasive inroads to creep into other parts of the brain," said Karumbaiah. "That could be clinically beneficial for a surgeon wanting to remove the tumor and not having to worry about rogue cancer cells."

Looking ahead, Karumbaiah is hopeful that repurposing a compound known to be safe, with proven and beneficial binding properties, could help accelerate review and approval of this potential new therapeutic, and advance consideration in helping to expedite the drug approval process.

"Our hope is that, in the wake of this discovery, lives can be saved, and we can finally change the scope of this life-threatening disease," said Karumbaiah. "In my five years at UGA, this is the highest profile cancer paper I've ever had."

###

This study was funded by the National Institutes of Health and UGA's Clinical and Translational Research Unit. The Regenerative Bioscience Center is a unit of the UGA Office of Research, with generous support from the College of Agriculture and Environmental Sciences and its Department of Animal and Dairy Science.

Media Contact

Charlene Betourney
cbetourney@uga.edu
706-542-4081

 @universityofga

http://www.uga.edu 

Charlene Betourney | EurekAlert!
Further information:
https://news.uga.edu/rbc-existing-drug-treat-brain-cancer/
http://dx.doi.org/10.1096/fj.201802610RR

Further reports about: Environmental Sciences MRI UGA brain cancer brain tissue brain tumors tumor cells tumors

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

Im Focus: A molecular 'atlas' of animal development

Researchers from the University of Pennsylvania provide a molecular map of every cell in a developing animal embryo

In a paper in Science this week, Penn researchers report the first detailed molecular characterization of how every cell changes during animal embryonic...

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Existing drug could treat aggressive brain cancer

11.09.2019 | Life Sciences

Breeders release new flaxseed cultivar with higher yield

11.09.2019 | Agricultural and Forestry Science

How long does a whale feed? New data gives insight into blue and fin whale behavior

11.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>