Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excellent catering: How a bacterium feeds an entire flatworm

09.04.2019

In the sandy bottom of warm coastal waters lives Paracatenula – a small worm that has neither mouth, nor gut. Nevertheless, it lacks nothing thanks to Riegeria, the bacterium that fills most of the body of the tiny worm. Riegeria looks after its host – it is farmer, quartermaster and cook all in one. An international team of researchers led by Harald Gruber-Vodicka and Oliver Jäckle from the Max Planck Institute for Marine Microbiology in Bremen has now deciphered how the bacteria supply the worm with nutrition, publishing their results in the journal PNAS.

Whether on an expedition to Antarctica, in space travel or while camping - if we cannot get our food from our surroundings, we have to pack provisions. Researchers from Bremen have now discovered an astounding bacterial provider of provision packages in the sandy seabed off the island of Elba in the Mediterranean.


Paracatenula inhabits the sediments of warm regions in sheltered sandy habitats. The white coloration of Paracatenula is due to its bacterial symbionts that carry a variety of storage substances.

Oliver Jäckle/Max Planck Institute for Marine Microbiology


Harald Gruber-Vodicka from the Max Planck Institute in Bremen in the field nearby the seabed in which Paracatenula lives with its bacterial symbionts.

Manuel Kleiner

A single symbiotic bacterium provides its host with everything it needs – to such perfection that its host, tiny worms called Paracatenula, no longer has a mouth or gut. And the bacterium even serves the food in handy portions.

A perfect match: together for 500 million years

The bacteria and the worm have been a couple for at least 500 million years. Over these years, the symbiont has reduced its genome and has only kept essential functions. Despite this reduction, it supplies the worm with everything it needs to thrive.

"The symbiont´s food packages for sure contain lipids and proteins, but likely also sugars and fatty acids, vitamins and a number of other substances for energy and biomass supply," says Harald Gruber-Vodicka, initiator and head of the study. "We have not seen anything like this in any other symbiosis – that, despite such a reduced genome, a single bacterium can produce so many different substances and make them available to its host".

Where plants use light as energy source for the production of biomass, the symbionts use chemical energy in a process called chemosynthesis. They convert carbon dioxide into organic compounds with the energy from hydrogen sulphide, a common compound in the sediments with the smell of rotten eggs. Such organics then serve the host as food.

Sustainable harvest in the Paracatenula symbiosis

A big surprise for the scientists was the mode of how the symbiont is thought to supply its host. "In all chemosynthetic symbioses known to date, the host digests the bacteria to access their nutrients," explains Oliver Jäckle, who carried out the study as part of his doctoral thesis. "Other chemosynthetic symbionts additionally use so-called transporter proteins that deliver nutrition to their hosts. In the Paracatenula symbiosis, we did not find either in large quantities. Everything pointed to a different mechanism."

It was only shortly before the completion of his dissertation that Jäckle and Gruber-Vodicka with the help of their colleague Niko Leisch and his electron microscopy work were able to solve this puzzle: The bacteria supply the worm with many small, droplet-like vesicles "It's a bit like a fruit garden," Gruber-Vodicka describes this observation.

"The bacteria continuously bear fruit, which the worm reaps. In other symbioses it’s more like harvesting a cornfield, their bacteria are completely mowed down, the worm digests most of the bacterial cells. This emphasizes how imaging analyses can be key for in-depth understanding of the physiology of bacteria-animal interactions."

New insights thanks to an interdisciplinary approach

The presented study provides unprecedented insights into how a symbiosis between bacteria and their gutless host works. Besides the imaging, a widespread comparison with similar symbioses, for example from mussels or tubeworms, contributed to a detailed understanding of this symbiosis."

Our interdisciplinary work, which combined genomics with biochemical and electron microscopic investigations as well as physiological experiments allowed us to look at the symbiosis from different perspectives ," as Jäckle points out. Mixing these insights with a lot of patience, Jäckle managed to keep and grow Paracatenula in the laboratory for now more than three years.

Building on these exciting results, Jäckle, Gruber-Vodicka and their colleagues now plan to use the worm’s genome to look at its role more closely. "The worm has no means to excrete but also does not appear to have some kind of cellular dumpster. Everything the bacteria provide is apparently used by the worm, one way or the other," says Gruber-Vodicka.

Another avenue for research comes from the fact that Paracatenula does not only occur in the Mediterranean Sea. The researchers have collected them from several sites worldwide. They are currently comparing how symbionts from different host species solve the food provisioning, but also how these processes have evolved in Paracatenula lineages that have split into different species tens to hundreds of millions of years ago.

Wissenschaftliche Ansprechpartner:

Dr. Harald Gruber-Vodicka
Department of Symbiosis
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-760
E-Mail: hgruber@mpi-bremen.de

Dr. Fanni Aspetsberger
Press Officer
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-947
E-Mail: faspetsb@mpi-bremen.de

Originalpublikation:

Oliver Jäckle, Brandon K. B. Seah, Målin Tietjen, Nikolaus Leisch, Manuel Liebeke, Manuel Kleiner, Jasmine S. Berg and Harald R. Gruber-Vodicka: Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula. PNAS. DOI: 10.1073/pnas.1818995116

Weitere Informationen:

http://vimeo.com/290672261
http://www.mpi-bremen.de/Page3512.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>