Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evonik is operating a pilot plant for bio-based amino lauric acid

02.08.2013
An alternative raw material for polyamide 12

In early 2013, Evonik Industries began operating a pilot plant for -amino lauric acid (ALS) in Slovenska Lupca, Slovakia. The effort represents Evonik’s next step forward in the production of sustainable high-performance plastics.

The biobased -amino-lauric acid is an alternative to petroleum-based laurin lactam (LL). ALS replaces the monomer LL in the manufacture of sustainable high-performance plastics and yields an identical compound polyamide 12 (PA 12). The pilot plant is the result of intensive research and advances the process development effort to an industrial scale.

Development of the process was funded by the Federal Ministry of Education and Research (Promotion No. 0315205). The biotechnological process relies on renewable resources and is unique the world over. Palm oil, which Evonik has already been using as a base for various other chemical products, is the starting material. Over the long run, the entirely new process has the potential to complement the butadiene-based production of PA12.

With a second conventional, petroleum-based polyamide 12 plant in Singapore in the planning stage, Evonik is in a strong position to be a global market and technology leader in PA12 production technology. “In the long term, this new, alternative raw material makes us less dependent on limited fossil resources and provides our back-integrated production a second pillar to stand on,” says Gregor Hetzke, head of Evonik’s Performance Polymers Business Unit.

For Evonik, a high level of innovation is an engine for profitable growth and for strengthening its market and technology lead. In 2012, Evonik invested €393 million in research and development to be able to offer customers and partners innovative products, solutions, and methods. This is facilitated by a global R&D network of some 2,500 employees of different disciplines across more than 35 sites.

Dr. Edda Schulze | idw
Further information:
http://www.evonik.com

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>