Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An evolutionary compromise for long tooth preservation

24.07.2013
Researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig and the Senckenberg Research Institute in Frankfurt have conducted stress analyses on gorilla teeth of differing wear stages.

Their findings show that different features of the occlusal surface antagonize tensile stresses in the tooth to tooth contact during the chewing process. They further show that tooth wear with its loss of dental tissue and the reduction of the occlusal relief decreases tensile stresses in the tooth. Thus, when the condition of the occlusal surface changes, the biomechanical requirements on the existing dental material change as well – an evolutionary compromise for tooth preservation.


Maximal principal stress distribution observed in three gorilla teeth of an unworn (left), a lightly worn (middle) and a worn (right) condition. © MPI f. Evolutionary Anthropology

First, the researchers created 3D digital models of three gorilla lower second molars differing in wear stages. In a second step they applied a Software tool (Occlusal Fingerprint Analyser) developed in the Senckenberg Research Institute to precisely determine tooth to tooth contacts. They then used an engineering approach, finite element analysis (FEA), to evaluate whether some dental traits usually found in hominin and extant great ape molars have important biomechanical implications.

The results show that in unworn and slightly worn molars (with a well-formed occlusal relief that is most effective for processing food) tensile stresses concentrate in the grooves of the occlusal surface. In such a condition, the different crests of a molar carry out important biomechanical functions, for example, by reinforcing the crown against stresses that occur during the chewing process. Due to a loss of tooth tissue and a reduction of the occlusal relief the functionality of these crests diminishes during an individual’s lifetime. However, this reduced functionality of the crests in worn teeth is counterbalanced by an increase in contact areas during tooth to tooth contacts, which ultimately contributes to a dispersion of the forces that affect the occlusal surface.

This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite forces and to reduce tooth failure throughout the lifetime of an individual. “It seems that we observe an evolutionary compromise for long tooth preservation. Even though worn teeth are not as efficient they still fulfill their task. This would not be the case if they were lost prematurely“, says Stefano Benazzi of the Max Planck Institute for Evolutionary Anthropology. He adds: “Tooth evolution and dental biomechanics can only be understood, if we further investigate tooth function in respect to the dynamic changes of tooth structures during the lifespan of individuals”.

“The results have strong implications for understanding the functional biomechanics of dental traits, for deciphering the evolutionary trend of our masticatory apparatus and might have important implications in modern dentistry for improving dental treatments”, says Jean-Jacques Hublin, director of the Department of Human Evolution at the Max Planck Institute for Evolutionary Anthropology. [SJ]

Original publication:

Stefano Benazzi, Huynh Nhu Nguyen, Ottmar Kullmer, Jean-Jacques Hublin
Unravelling the functional biomechanics of dental features and tooth wear
PLOS ONE, July 23, 2013, http://dx.plos.org/10.1371/journal.pone.0069990
Contact:
Dr. Stefano Benazzi
Department of Human Evolution
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-362
Email: stefano_benazzi@­eva.mpg.de
Dr. Ottmar Kullmer
Department of Palaeoanthropology and Messel Research
Senckenberg Research Institute, Frankfurt/Main
Phone: +49 69 7542-1364
Email: okullmer@­senckenberg.de
Press relations offices:
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@eva.mpg.de
Regina Bartel
Senckenberg Gesellschaft für Naturforschung
Phone: +49 69 7542 1434
Email: regina.bartel@senckenberg.de

Dr. Sören Dürr | Senckenberg
Further information:
http://www.senckenberg.de/presse
http://www.mpg.de/7474328/tooth-preservation?filter_order=L&research_topic

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>