Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Every Bite You Take, Every Move You Make, Astrocytes Will Be Watching You

19.05.2015

Research reveals a previously unknown role for non-neuron cells in the brain

Chewing, breathing, and other regular bodily functions that we undertake “without thinking” actually do require the involvement of our brain, but the question of how the brain programs such regular functions intrigues scientists.


Courtesy Jeff Lichtman/Harvard University. Licence : CC BY NC ND 2.0. Source : https://flic.kr/p/5sEdqj

Chewing, breathing, and other regular bodily functions that we undertake “without thinking” actually do require the involvement of our brain, but the question of how the brain programs such regular functions intrigues scientists. Arlette Kolta, a professor at the University of Montreal’s Faculty of Dentistry, has shown that astrocytes play a key role. Astrocytes are star-shaped glial cells in our brain. Glial cells are not neurons – they play a supporting role. Kolta’s finding in fact challenges some of the beliefs scientists have about the way our brain works. Here, brain neurons are illustrated in a “brainbow.” The astrocytes are not shown.

A team lead by Arlette Kolta, a professor at the University of Montreal’s Faculty of Dentistry, has shown that astrocytes play a key role. Astrocytes are star-shaped glial cells in our brain. Glial cells are not neurons – they play a supporting role. The team’s finding in fact challenges some of the beliefs scientists have about the way our brain works.

The brain contains billions of cells and every brain function depends on the ability of neurons to communicate with each other. Neurons use an electrical language to communicate and the pattern of their electrical activity encodes the essence of the message that they convey to the next neuron.

“In the neuron-centric vision that dominates at the moment, changes in the pattern of neuronal electrical activity depend solely on the intrinsic properties of neurons and on the information they transmit to one another. Our results demonstrate that glial cells play a crucial role controlling the pattern of neuronal electrical activity and thereby neuronal functions,” Kolta said.

By using different methods to measure the electrical activity of neurons in the trigeminal system which enables sensation in the face and facial motor functions, the researchers were able to look at how the brain processes chewing.

“We discovered a mechanism by which astrocytes regulate the extracellular concentration of calcium in this sensory-motor circuit, and by doing this, determine the pattern of electrical activity of surrounding neurons. We think that the trigeminal neurons that we investigate have a dual function depending on the pattern of their electrical activity which can be either tonic or bursting,” explained Philippe Morquette, first author of the study. Tonic is like the hum when you pick up the phone, a continuous and permanent connection to the different parts of the system, while bursting is like the ringing you hear when you finish dialing. .

When neurons are in the tonic mode, they faithfully relay to other neurons information that they receive from sensory afferents. Sensory afferents are the means by which the brain and nervous system receive signals from the bodily senses. When they are in the rhythmic bursting mode they generate a rhythmic motor command, like the one needed to produce a repetitive movement such as chewing.

“The rhythmic bursting mode depends on activation of a current that is modulated by the extracellular concentration of calcium. We show that astrocytes are responsible for the switch from one mode to the other, and thus presumably from one function to the other. The switch cannot occur when astrocytes are ‘inactivated’ or when the described astrocytic mechanism is blocked. This mechanism relies on release of a specific calcium binding protein released by glial cells,” Morquette added.

Published in Nature Neuroscience on May 4, the study is the first to show the role that astrocytes play in regulating the concentration of calcium outside of neurons, bolstering the idea that these cells play an important role in neural processing. “The mechanism for regulating calcium that we described may have far reaching implications given the number of neuronal functions that may be altered by changes in extracellular calcium concentration and by the ubiquitous distribution of S100-beta, the calcium binding protein involved,” Morquette explained.

The importance of the findings is far greater than a better understanding of how we chew. “The mechanisms involved contribute to a wide variety of brain functions: they’re at the basis of other vital and repetitive movements like locomotion and respiration, they’re widespread in the cortex, hippocampus and other areas, and have been associated to many important functions such as attention and learning and memory. Finally, it is well known that astrocytes are over-activated in pathological situations associated with increased burst firing, like during seizures, and we believe that the mechanism described here is of particular relevance to those situations,” Kolta said.

About this study:
Philippe Morquette, Dorly Verdier, Aklesso Kadala, James Féthière, Antony G Philippe, Richard Robitaille and Arlette Kolta published “An astrocyte-dependent mechanism for neuronal rhythmogenesis” in Nature Neuroscience on May 4, 2015. Kolta and Morquette are affiliated with the Department of Neurosciences and Groupe de Recherche sur le Système Nerveux Central at University of Montreal’s Faculty of Medicine. Kolta is also affiliated with the university’s Faculty of Dentistry, and with the Réseau de Recherche en Santé Buccodentaire et Osseuse du Fonds de Recherche Québec-Santé. The study was financed by Canadian Institutes for Health Research (grant 14392). The University of Montreal is officially known as Université de Montréal.

Contact Information
William Raillant-Clark
International Press Attache
w.raillant-clark@umontreal.ca
Phone: 514-343-7593
Mobile: 514-566-3813

William Raillant-Clark | newswise
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>