Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even plants can be stressed

03.09.2015

Environmental conditions such as drought or salinity can be detrimental to crop performance and yield. Salt is one of the major factors that negatively impact on plant growth and it is estimated that 20% of the total, and 33% of irrigated, agricultural lands are afflicted by high salt worldwide. It is therefore of great agricultural importance to find genes and mechanisms that can improve plant growth under such conditions. The team of Dr. Staffan Persson has identified a protein family that helps plants to grow on salt, and outlined a mechanism for how these proteins aid the plants to produce their biomass under salt stress conditions.

Environmental conditions such as drought, cold or salinity can be detrimental to crop performance and yield. Salt is one of the major factors that negatively impact on plant growth and it is estimated that 20% of the total, and 33% of irrigated, agricultural lands are afflicted by high salt worldwide.


Effect of salt stress on plants (Left: Plants with CC proteins (wild type) grow better on salt than those missing them (mutant); Right: A view inside he cell under salt stress (green: CC proteins).

It is therefore of great agricultural importance to find genes and mechanisms that can improve plant growth under such conditions. The team of Dr. Staffan Persson, group leader at the Max Planck Institute of Molecular Plant Physiology until January 2015 and now Professor at the University of Melbourne in Australia, has identified a protein family that helps plants to grow on salt, and outlined a mechanism for how these proteins aid the plants to produce their biomass under salt stress conditions.

Plants need to make more and bigger cells if they want to grow and develop. Unlike animal cells, plant cells are surrounded by a cellular exoskeleton, called cell walls which direct plant growth and protect the plant against diseases.

Importantly, most of the plants biomass is made up of the cell wall with cellulose being the major component. Hence, plant growth largely depend on the ability of plants to produce cell walls and cellulose, also under stress conditions, and it is therefore no surprise that research on cell wall biosynthesis is of high priority.

Previous studies of Dr. Staffan Persson’s research group and others have shown that the cellulose producing protein complex, called cellulose synthase, interacts with, and is guided by, an intracellular polymer structure, called microtubules. This interaction is important for shape and stability of plant cells.

The current research revealed that a previously unknown family of proteins supports the cellulose synthase machinery under salt stress conditions, and was named “Companions of Cellulose synthase (CC). “We show that these proteins, which we called CC proteins, are part of the cellulose synthase complex during cellulose synthesis”, said Staffan Persson.

Effect of salt stress on plants
Left panel (plants grown on salt): Plants with CC proteins (wild type) grow better on salt containing media than mutant plants, missing the CC genes
Right panel (inside the cell): A view inside he cell under salt stress; plants with CC proteins (wild type) show functional cellulose synthase complexes in the plasma membrane; Plants without CC proteins (mutant) show internalized cellulose synthase complexes which are not active anymore.
CC-proteins shown in green, cellulose synthase complexes are shown in red

The researchers discovered that the CC gene activity was increased when plants were exposed to high salt concentrations. Thus, the research team hypothesized an involvement of these proteins in salt tolerance of plants.

“To prove this hypothesis we deleted multiple genes of the CC gene family in the model plant Arabidopsis thaliana (thale cress), and grew the plants on salt-containing media. These mutated plants performed much worse than the wild-type plants”, explains Christopher Kesten, PhD student in Dr. Persson’s research group, and co-first author of this study.

„In an additional step, we made fluorescent versions of the CC proteins and observed, with the help of a special microscope, where and how they function. It was quite a surprise to see that they were able to maintain the organization of microtubules under salt stress. This function helped the plants to maintain cellulose synthesis during the stress“, adds Dr. Anne Endler, also co-first author of this study.

The research group demonstrated that while the control plants could maintain their microtubules intact, the plants lacking the CC activity were unable to do so. This loss in microtubule function led to a failure in maintaining cellulose synthesis, which explained the reduction in plant growth on salt. These results therefore provide a mechanism for how the CC proteins aid plant biomass production under salt stress.

The group’s discovery of the CC proteins could promote future generation of salt tolerant crop plants. A major global agricultural challenge involves an increase in food production to sustain a growing population. By 2050 it is estimated that we need to increase our production of food with 70% to feed an additional 2.3 billion people. Salinity is a major limiting factor for this goal as more than 50% of the arable land may be salt afflicted by the year 2050.

Dr. Staffan Persson was group leader at the Max Planck Institute of Molecular Plant Physiology until January 2015. He is now at the „School of Biosciences” at the University of Melbourne in Australia.

Contact:
Dr. Staffan Persson
Staffan.persson@unimelb.edu.au

Dr.Ulrike Glaubitz
Public Relations
Email: Glaubitz@mpimp-golm.mpg.de

Original publication
Anne Endler, Christopher Kesten, René Schneider, Yi Zhang, Alexander Ivakov, Anja Fröhlich, Norma Funke, Staffan Persson
A mechanism for sustained cellulose synthesis during salt stress
Cell (2015), 3.09.2015, http://dx.doi.org/10.1016/j.cell.2015.08.028

Weitere Informationen:

http://www.mpimp-golm.mpg.de

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>