Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Union sponsors fabrication of molecular electronic components on the sub-nanometer scale

29.10.2013
Mainz chemist Angelika Kühnle participates in cross-border joint project in the field of information and communication technology

Professor Angelika Kühnle and her work group at the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU) are participating in a new EU project focusing on information and communication technology.

Over the next four years, a total of eight partners from six European countries will be involved in the "Planar Atomic and Molecular Scale Devices" (PAMS) project. The goal is to manufacture planar electronic components to enable technological and scientific research to be conducted at the atomic or sub-molecular level. Kühnle's work group will receive some EUR 700,000 in funding under the 7th EU Research Framework Program.

The purpose of the PAMS project is to design electronic components that will be at a scale below the sub-nanometer range, in other words, in the atomic range. In order to do so, existing tools need to be further developed so that the necessary building blocks, such as nano wires and nano pads, can be connected and manipulated at low temperatures. Among the core aims of the research project is to understand the electronic functioning of these nano wires and the contacts between the various components for further improvement.

The Mainz-based team will focus on the synthesis of tailored molecular components. "We will be producing molecular structures on surfaces that, for example, will be used as molecular wires. The essential requirement is that these structures need to be directly synthesized on a non-conducting or semi-conducting carrier layer," explained Kühnle. "For this purpose, our cooperation partners will synthesize tailored precursor molecules with clearly defined properties."

The precursor molecules will then be attached to isolating or semi-conducting surfaces under controlled conditions in an ultra-high vacuum environment. The next step will be to activate the precursor molecules on the surfaces by means of exposure to high temperatures or light irradiation. This should trigger a reaction that links the molecules, resulting in a stable, interlinked molecular component on the surface of the material.

Also participating in the EU project "Planar Atomic and Molecular Scale Devices" under supervision of Professor André Gourdon of the Centre National de la Recherche Scientifique (CNRS) in Toulouse, France, will be, in addition to Johannes Gutenberg University Mainz, the Jagiellonian University in Kraków, Poland, Dresden University of Technology, Germany, the University of Santiago de Compostela, Spain, the Spanish National Research Council in Madrid, Aalto University in Finland, and the IBM Research GmbH in Rüschlikon, Switzerland.

Further information:
Professor Dr. Angelika Kühnle
Institute of Physical Chemistry
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23930
fax +49 6131 39-53930
e-mail: kuehnle@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.self-assembly.uni-mainz.de/

More articles from Life Sciences:

nachricht Study provides insight into how nanoparticles interact with biological systems
22.10.2018 | Northwestern University

nachricht New technique reveals limb control in flies -- and maybe robots
22.10.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>