Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Union sponsors fabrication of molecular electronic components on the sub-nanometer scale

29.10.2013
Mainz chemist Angelika Kühnle participates in cross-border joint project in the field of information and communication technology

Professor Angelika Kühnle and her work group at the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU) are participating in a new EU project focusing on information and communication technology.

Over the next four years, a total of eight partners from six European countries will be involved in the "Planar Atomic and Molecular Scale Devices" (PAMS) project. The goal is to manufacture planar electronic components to enable technological and scientific research to be conducted at the atomic or sub-molecular level. Kühnle's work group will receive some EUR 700,000 in funding under the 7th EU Research Framework Program.

The purpose of the PAMS project is to design electronic components that will be at a scale below the sub-nanometer range, in other words, in the atomic range. In order to do so, existing tools need to be further developed so that the necessary building blocks, such as nano wires and nano pads, can be connected and manipulated at low temperatures. Among the core aims of the research project is to understand the electronic functioning of these nano wires and the contacts between the various components for further improvement.

The Mainz-based team will focus on the synthesis of tailored molecular components. "We will be producing molecular structures on surfaces that, for example, will be used as molecular wires. The essential requirement is that these structures need to be directly synthesized on a non-conducting or semi-conducting carrier layer," explained Kühnle. "For this purpose, our cooperation partners will synthesize tailored precursor molecules with clearly defined properties."

The precursor molecules will then be attached to isolating or semi-conducting surfaces under controlled conditions in an ultra-high vacuum environment. The next step will be to activate the precursor molecules on the surfaces by means of exposure to high temperatures or light irradiation. This should trigger a reaction that links the molecules, resulting in a stable, interlinked molecular component on the surface of the material.

Also participating in the EU project "Planar Atomic and Molecular Scale Devices" under supervision of Professor André Gourdon of the Centre National de la Recherche Scientifique (CNRS) in Toulouse, France, will be, in addition to Johannes Gutenberg University Mainz, the Jagiellonian University in Kraków, Poland, Dresden University of Technology, Germany, the University of Santiago de Compostela, Spain, the Spanish National Research Council in Madrid, Aalto University in Finland, and the IBM Research GmbH in Rüschlikon, Switzerland.

Further information:
Professor Dr. Angelika Kühnle
Institute of Physical Chemistry
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23930
fax +49 6131 39-53930
e-mail: kuehnle@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.self-assembly.uni-mainz.de/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>