Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Commission to fund new research project / WWU takes leading role

03.07.2009
In the next four years the European Commission will be providing funding to the tune of €6 million for the new "PolyModE" research project, which is being coordinated at the University of Münster.

The aim of the project is to develop new types of enzymes in order to make the best possible use of certain complex sugar molecules in the food industry and for technical and medical applications.

The project is being led by the team of Prof. Bruno Moerschbacher from the Institute of Biochemistry and Biotechnology of Plants at WWU; also involved are other universities and research institutes, multinational companies and small biotechnology firms from Germany, France, Denmark, Holland, Sweden and Bulgaria. For their part of the project the Münster team will be receiving around € 800,000.

Polysaccharides ("multi-sugars") are by far the most frequent biomolecules. They include everyday substances such as starch from potatoes or cellulose from cotton. In addition to such simple-structure polysaccharides, which contain multiple lines of a certain sugar molecule in a long chain, there are also very complex polysaccharides which are composed of many different sugars, e.g. pectin, which makes jam gel. Such complex sugars, also known as hydrocolloids, are important additives used especially in the food industry. They are extracted primarily from plants and algae.

In many cases, the hydrocolloids with the best properties are only formed from very particular organisms and are therefore only available in limited quantities. So the aim of the project is to help open up new sources for known hydrocolloids. For example, the researchers want to isolate certain enzymes - those biological tools which a few rare species of red algae use to produce the high-quality carrageenan hydrocolloid. Using modern molecular genetic methods, the researchers then want to optimise these enzymes to the extent that they can be used in a biotechnological process to convert the lower-quality carrageenan of other, more widespread species of red algae unto the high-quality product from the rarer algae.

Hydrocolloids also play an important role in the human body. "Sugars are masters of variety", says Prof. Moerschbacher. "They can form innumerable structures, and the different structures all contain information." For example, the immune system can often recognise viruses by their typical sugars. "The language of sugars is far more complex than that of genes or proteins, and so far we've hardly been able to 'read' it, let alone understand it," he says. "If we want to make use of this language, we will also have to learn to write it."

Currently only a few "words" of this sugar language are known, including one sugar compound which prevents human blood from coagulating. One of its uses is for patients with thrombosis, but at present it can only be produced in a very elaborate and expensive process. In their new project the scientists want to find the "reading and writing tools" of the body's cells - in other words, to find those enzymes which produce the coagulation inhibitor and carry out its "stage directions". Using molecualr genetic methods, the researchers want not only to produce these enzymes in large quantities and in a highly purified form, but also to study their properties and optimise them so that they have the conditions for cell-free synthesis or for a modification of complex sugar structures.

Work on the PolyModE ("Polysaccharide Modifying Enzymes") project might also be able to produce new types of complex sugars with even better improved properties. "When, for example, we understand how human cells produce certain blood coagulation inhibitors," says Prof. Moerschbacher, "or why they react to certain substances by stimulating the immune system, then we will be able to produce 'designer sugars' with the help of optimised enzymes, and these sugars can then specifically prevent blood from coagulating or, for example, help wounds to heal up. I am convinced that such complex polysaccharides, produced entirely biologically and which have a specific effect, have enormous potential in many areas. They are no problem for the human body and are easily degradable in the environment."

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Biologie.IBBP/moerschbacher/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>