New EU project CORONET: Novel interfaces between brain and computer

The new EU project CORONET will develop the technological and theoretical foundations for such future “bio-hybrid” interfaces between biological and artificial nervous tissues.

The European Commission supports CORONET with 2.7 Mio. € from the 7th Framework Program. Within the category “Brain-inspired Computing”, CORONET received the best rating out of all 39 concurring project proposals.

The key idea of CORONET is to work with, not against, the complex spontaneous activity of living nervous tissues. The project will first “gently steer” the spontaneous activity into a desired direction by applying continuous, weak electrical stimulation. Then, the nervous tissue will be coupled to artificial, electronic networks that show a behavior as complex as that of the living brain. By aid of this coupling, the scientists will try to “read out” natural, spontaneously arising activity states in the nervous tissue.

In a first step, computer simulations will serve as artificial neural networks. In a second step, the researchers will apply custom-built advanced integrated circuits that operate based on principles of the brain (“neuromorphic VLSI”). The final goal of the project is to seamlessly interface “silicon-” and living nervous tissues.

The project involves senior scientists from Magdeburg, Dresden, Trieste, Rome, Haifa, and Barcelona and is led by Prof. Jochen Braun (Otto-von-Guericke Universität Magdeburg). It builds on previous research performed in the Bernstein Group Magdeburg, coordinated also by Prof. Braun and funded by the German Federal Ministry of Education and Research (BMBF).

Contact Information:
Prof. Jochen Braun
Institut für Biologie
Otto von Guericke University Magdeburg
Leipziger Str. 44
39120 Magdeburg
Germany
Phone: +49 391 67 55 050
jochen.braun@ovgu.de

Media Contact

Dr. Simone Cardoso de Oliveira idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors