Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equilibrium in the brain

08.09.2011
Excitation and inhibition remain balanced, even when the brain undergoes reorganization

Every second, the brain's nerve cells exchange many billions of synaptic impulses. Two kinds of synapses ensure that this flow of data is regulated: Excitatory synapses relay information from one cell to the next, while inhibitory synapses restrict the flow of information.

Scientists at the Max Planck Institute of Neurobiology in Martinsried could now show, in cooperation with colleagues from the Ruhr University of Bochum, that excitatory and inhibitory synapses remain balanced – even if the brain undergoes reorganization. Following a small retinal lesion, the nerve cells in the mouse brain responsible for this particular region no longer received (excitatory) information. As a result, the cells reduced the number of their inhibitory synapses by 30% in the space of just one day. This down-regulated balance between excitation and inhibition could indicate to the nerve cells that it is time for them to reconfigure to partially compensate for the loss of information.

Nerve cells are "information addicts". To process and store new information or to optimize already existing ways of processing it, minute appendages emerge continually from their surface and grow towards neighboring cells. At the end of these appendages, a synapse can develop via which the two nerve cells can then exchange information. Scientists at the Max Planck Institute of Neurobiology in Martinsried and the Ruhr University of Bochum were already able to show how quickly such nerve cells can reorganize themselves even in the adult brain, so that they are constantly able to process information: After a small retinal lesion, the nerve cells responsible for processing information from this area were "out of work". However, during the weeks to follow, the neurobiologists observed that these nerve cells increased the number of appendages sent towards their neighbouring cells. The cells that had been temporarily redundant were thus reconnecting themselves and could take on new tasks within the processing network.

However, optimal processing in the brain depends not only on the circulation of information but also on the direct inhibition of the flow of information at given points. What actually happens to these so-called inhibitory synapses when conditions change in the brain? Since this area has hardly received any detailed scientific attention, the team of scientists set out to examine the fate of these synapses in the nerve cells that receive no information on account of the small retinal lesion.

"One possible outcome was that inhibitory synapses remained, maybe to inhibit these cells which would otherwise pass on no, or only meaningless, information", explains Tara Keck, whose study has just been published in the scientific journal Neuron. However, the neurobiologists discovered that precisely the opposite was the case. They showed that those cells which had been rendered redundant reduced the number of their inhibitory synapses by about one third within one day. Such was the extent of this downsizing that the imbalance in the flow of information, brought about by the loss of the excitatory signals from the retina, was quashed. "The exciting thing about this result is the insight that the brain appears to be constantly seeking to maintain the balance between excitation and inhibition", Keck relates.

The scientists already have a theory as to the importance of this lower level of the established balance. "The decimation of the inhibitory synapses may act as a signal to neighbouring cells by advertising: Nerve cells seeking work. Please get in touch", reflects Mark Hübener, the head of the study. The scientists now hope to establish whether this is indeed the case and whether more inhibitory synapses are produced to regain the original balance once the rewiring with other cells is complete.

Original publication:

Tara Keck, Volker Scheuss, R. Irene Jacobsen, Corette J. Wierenga, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex, Neuron, online publication, September 8 2011

Stefanie Merker | EurekAlert!
Further information:
http://www.neuro.mpg.de

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>