Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy at the Molecular Level

10.02.2016

Researchers study the link between malformations of the cerebral cortex and the occurrence of the neurological disease

Why does a structural irregularity in the temporal lobe make humans more susceptible to epileptic seizures?


The detail of the cerebral cortext shows the myelin fibers that form an electrically insulating layer around the nerve cells (green/violet). Source: Cerebral Cortex/Oxford University Press

Experts have been searching for the answer to this question for a long time. A group of scientists at the Freiburg University Medical Center consisting of members of the University of Freiburg’s Cluster of Excellence Brain Links–Brain Tools has published a study involving a comparison of nearly 30,000 genes in the journal Cerebral Cortex.

The team describes pathological processes in the brain tissue in developmental disorders of the cerebral cortex. The study is the largest of its kind to date. The authors of the study see the research as an excellent example of cooperation between fundamental researchers and clinicians.

Pathological changes in the cerebral cortex referred to as “focal cortical dysplasias” are present in approximately 25 percent of epilepsies limited to particular brain areas. Patients with these dysplasias are often resistant to antiepileptic drugs. The most effective treatment is currently to remove the affected areas in an operation, after which the epileptic seizures generally stop happening.

Up to now, however, researchers could only speculate about how the abnormal structure of the cerebral cortex is linked at the molecular level to the occurrence of epilepsy. To investigate this connection, Freiburg neurobiologist Prof. Dr. Carola Haas and her team compared gene expression in malformed brain tissue with that in epileptic, non-malformed tissue.

To do so, they used so-called microarrays, a chip technology originally developed for the semiconductor industry. In this way, Haas and her colleagues succeeded in demonstrating that the factors less frequently expressed in diseased tissue are primarily those responsible for the formation of myelin. Myelin is an electrically insulating layer surrounding nerve cells. Additional analyses showed that the structure of this layer appears to be broken open and in disarray.

This could be an indication that the conduction of the stimuli is considerably impaired in the affected brain region. “The disposition for epilepsy in patients with the malformation investigated in our study could potentially be explained by a resulting electrical over-excitability of this nerve fiber sheath,” says Haas. The group at the Department of Neurosurgery now aims to conduct further experiments to investigate what precisely happens in the malformed tissue during the development of myelin.

Original publication:
C. Donkels, D. Pfeifer, P. Janz, S. Huber, J. Nakagawa, M. Prinz, A. Schulze-Bonhage, A. Weyerbrock, J. Zentner, C. Haas (2016): Whole Transciptome Screening Reveals Myelination Deficits in Dysplastic Human Temporal Neocortex. In: Cerebral Cortex., pp. 1–15.

Contact:
Prof. Dr. Carola Haas
Section for the Foundations of Epileptic Diseases
Department of Neurosurgery of the Medical Center – University of Freiburg
Phone: +49 (0)761/270-52950
E-Mail: carola.haas@uniklinik-freiburg.de

Levin Sottru
Science Communicator
Cluster of Excellence BrainLinks–BrainTools
University of Freiburg
Phone: +49 (0)761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-09.18-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>