Re-Using Enzymes Key to South Dakota State University Research

The research could lead to big financial savings for industry.

“Enzymes are usually very expensive items in chemistry or biochemistry,” said professor Basil Dalaly in South Dakota State University’s Department of Nutrition, Food Science and Hospitality. “One of the big obstacles in using enzymes in converting cellulose, or biomass, to ethanol is the high cost of enzymes. We are trying immobilize the enzyme by attaching it to beads.

“Afterwards, the enzyme could be used for more than one time — two, three, four, five times because the beads will keep the attached enzyme rather than allowing it to float away along with the processed products.”

Working with enzyme company Novozymes, Dalaly and his graduate student, Pavani Mandali, have evaluated several chemical methods to attach enzymes to beads. They then evaluated the enzyme activity, how well the enzymes attached to the beads and other technical variables.

“From our results so far, I can say we are successful in using the enzymes for five cycles, but with decreasing activity from 100 percent to 40 percent. We still retain 40 percent of the original activity of the enzyme,” Dalaly said.

He added that would be a huge financial advantage in industrial processes that rely on enzymes.

“Using the same enzyme for five times means you need not use a fresh batch of enzymes every time — you can use them over and over,” Dalaly said.

Mandali, who is working toward her Ph.D. in biological sciences, said the SDSU research shows enzymes attached to the beads have 95 percent of their original activity when used a second time; 75 percent of their original activity when used for a third cycle; 50 percent of their activity when used a fourth time; and about 35 to 40 percent of their original activity when used for a fifth processing cycle.

The SDSU study is part of a many-pronged project to develop more efficient methods to produce ethanol from cellulosic biomass, thought to be the source of the next generation of ethanol. Dalaly’s work uses biomass pretreated by engineers in SDSU’s Department of Agricultural and Biosystems Engineering.

“We are trying now to use biomass, corn stover and DDGS to convert to ethanol,” Dalaly said.

His work so far shows the re-used enzymes work better on some biomass materials than others.

“In the near future we will use these immobilized enzymes in a small bioreactor on different kinds of biomass, not only corn stover and DDGS, but also big bluestem, switchgrass and prairie cordgrass,” Dalaly said.

Dalaly’s work also looks at questions such as the time for all of the biomass to be hydrolyzed, or broken down. The project also involves analyzing the hydrolyzed biomass to determine what monosaccharides, or simple sugars, are in the hydrolysate.

Dalaly said as the SDSU work continues, he and his student will address the problem of how to gather or recover the beads once a processing cycle is over.

In addition to the enzymes provided by Novozymes, the federal Department of Energy and the South Dakota Corn Utilization Council help support Dalaly’s research though grants. The North Central Sun Grant Center at SDSU also funded some of Dalaly’s early work looking at enzymes in pretreatment of biomass feedstocks.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from seven different colleges representing more than 200 majors, minors and options. The institution also offers 23 master’s degree programs and 12 Ph.D. programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Media Contact

Basil Dalaly Newswise Science News

More Information:

http://www.sdstate.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors