How an Enzyme Tells Stem Cells Which Way to Divide

“Wherever aPKC is at on a cell's cortex or membrane, Miranda isn't,” says Kenneth E. Prehoda, a professor in the chemistry department and member of the UO's Institute of Molecular Biology.

When a stem cell duplicates into daughter cells, the side, or cortical domain, containing aPKC (atypical protein kinase C) continues as a stem cell, while the other domain with Miranda becomes a differentiated cell such as a neuron that forms the central nervous system.

Prehoda and co-author Scott X. Atwood, who studied in Prehoda's lab and recently earned his doctorate, describe how the mechanism works in the May 12 issue of the journal Current Biology.

Instead of a complex cascade of protein deactivation steps that many biologists have theorized, Prehoda said, aPKC strips phosphate off an energy-transfer nucleotide known as ATP and then attaches it to Miranda. This process forces Miranda away from aPKC and helps determine the fates of subsequent daughter cells.

“This process is pretty simple,” he said, when viewed from a biochemical perspective. “What happens is that Miranda gets phosphorylated by aPKC, turning it into an inactivated substrate and pushing it into another location in the cell.”

Much of the paper in Current Biology is devoted to why the more complex scenarios are not accurate. “There have been a lot of ideas on how this works, and most seemed to be really complicated and difficult to explain. We have found it's a much simpler mechanism,” Prehoda said, adding that the mechanism likely is similar in many other types of cells, not just stem cells.

“It's a basic-research question. How does this polarity occur? In order to develop stem cell-specific therapeutics based on a rational methodology you have to understand the mechanism,” he said.

If Miranda is improperly isolated into other regions by aPKC, the stem cell divides symmetrically, with both daughter cells adopting the same fate, In turn, Prehoda said, these cells can become tumorous as they continue to rapidly divide without proper polarization.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Kenneth E. Prehoda, associate professor of chemistry, 541-346-5030, prehoda@molbio.uoregon.edu

Links: Prehoda faculty page: http://www.uoregon.edu/~chem/prehoda.html; Prehoda's lab: http://www.molbio.uoregon.edu/~prehoda/; UO department of chemistry: http://www.uoregon.edu/~chem/; UO Institute of Molecular Biology: http://www.molbio.uoregon.edu/

Media Contact

Jim Barlow Newswise Science News

More Information:

http://www.uoregon.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors