Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How an Enzyme Tells Stem Cells Which Way to Divide

15.05.2009
Driving Miranda, a protein in fruit flies crucial to switch a stem cell's fate, is not as complex as biologists thought, according to University of Oregon biochemists. They've found that one enzyme (aPKC) stands alone and acts as a traffic cop that directs which roads daughter cells will take.

"Wherever aPKC is at on a cell's cortex or membrane, Miranda isn't," says Kenneth E. Prehoda, a professor in the chemistry department and member of the UO's Institute of Molecular Biology.

When a stem cell duplicates into daughter cells, the side, or cortical domain, containing aPKC (atypical protein kinase C) continues as a stem cell, while the other domain with Miranda becomes a differentiated cell such as a neuron that forms the central nervous system.

Prehoda and co-author Scott X. Atwood, who studied in Prehoda's lab and recently earned his doctorate, describe how the mechanism works in the May 12 issue of the journal Current Biology.

Instead of a complex cascade of protein deactivation steps that many biologists have theorized, Prehoda said, aPKC strips phosphate off an energy-transfer nucleotide known as ATP and then attaches it to Miranda. This process forces Miranda away from aPKC and helps determine the fates of subsequent daughter cells.

"This process is pretty simple," he said, when viewed from a biochemical perspective. "What happens is that Miranda gets phosphorylated by aPKC, turning it into an inactivated substrate and pushing it into another location in the cell."

Much of the paper in Current Biology is devoted to why the more complex scenarios are not accurate. "There have been a lot of ideas on how this works, and most seemed to be really complicated and difficult to explain. We have found it's a much simpler mechanism," Prehoda said, adding that the mechanism likely is similar in many other types of cells, not just stem cells.

"It's a basic-research question. How does this polarity occur? In order to develop stem cell-specific therapeutics based on a rational methodology you have to understand the mechanism," he said.

If Miranda is improperly isolated into other regions by aPKC, the stem cell divides symmetrically, with both daughter cells adopting the same fate, In turn, Prehoda said, these cells can become tumorous as they continue to rapidly divide without proper polarization.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Kenneth E. Prehoda, associate professor of chemistry, 541-346-5030, prehoda@molbio.uoregon.edu

Links: Prehoda faculty page: http://www.uoregon.edu/~chem/prehoda.html; Prehoda's lab: http://www.molbio.uoregon.edu/~prehoda/; UO department of chemistry: http://www.uoregon.edu/~chem/; UO Institute of Molecular Biology: http://www.molbio.uoregon.edu/

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>