Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered Protein-like Molecule Protects Cells Against HIV Infection

19.08.2009
With the help of the human immunodeficiency virus (HIV) and molecular engineering, researchers have designed synthetic protein-like mimics convincing enough to interrupt unwanted biological conversations between cells.

Interactions between proteins are fundamental to many biological processes, including some less-than-desirable ones like infections and tumor growth. For example, HIV and several other human viruses "” including influenza, Ebola and the severe acute respiratory syndrome (SARS) virus "” rely on interactions both among their own proteins and with host cell proteins to infect the cells.

"There's a lot of information transfer that occurs when proteins come together, and one would often like to block that information flow," says Samuel Gellman, a chemistry professor at the University of Wisconsin-Madison.

In a fundamental study of how to control protein shape, Gellman's UW-Madison research team, including former postdoctoral fellow W. Seth Horne, now at the University of Pittsburgh, and graduate student Lisa Johnson, created a set of peptide-like molecules that successfully blocked HIV infection of human cells in laboratory experiments.

By interacting with a piece of a crucial HIV protein called gp41, the synthetic molecules physically prevent the virus from infecting host cells.

The idea shows promise as a new avenue for targeting other unwanted protein interactions as well, Gellman says. The work, performed with a group led by John Moore and Min Lu at the Weill Medical College of Cornell University, is described in a paper appearing online this week (Aug. 17) in the Proceedings of the National Academy of Sciences.

Past attempts to prevent infection by selectively interfering with these interactions have had limited success, he says. Most drugs are small molecules and are not very effective at blocking most protein-protein interactions, which involve large molecular surfaces. Short snippets of proteins, or peptides, can be more effective than small molecules but are easily broken down by enzymes in the body and so require large and frequent doses that are difficult for patients to manage.

The new synthetic approach avoids these pitfalls by creating peptide-like molecules with a modified structure that degrading enzymes have trouble recognizing.

"We want to find an alternate language, an alternate way to express the information that the proteins express so that we can interfere with a conversation that one protein is having with another," Gellman explains.

Like engineers adjusting molecular blueprints, Gellman and his colleagues made structural tweaks to the backbones of their synthetic molecules to improve stability while retaining the three-dimensional shape necessary to recognize and interact with the HIV gp41 protein. The resulting molecules "” dubbed "foldamers" "” are hybrids of natural and unnatural amino acid building blocks, a combination that allows the scientists to control shape, structure and stability with much greater precision than is currently possible with natural amino acids alone.

In addition to adopting a shape that can interrupt the protein-protein dialogue, the novel foldamer has the additional advantage of being highly resistant to degradation by naturally occurring enzymes, which are stymied by the foldamer's unusual structure. This means the molecule can remain effective for a longer time and at lower doses.

Several of the synthetic foldamers showed potent antiviral activity against HIV when applied to cultured human cell lines in a dish. Although it is not clear that the foldamers themselves could ever be used as anti-HIV drugs, Gellman emphasizes, the results show that this type of approach has great potential to lead to new ways to think about designing molecules for antiviral therapies and other biomedical applications.

"You don't have to limit yourself to the building blocks that nature uses," Gellman says. "There's a huge potential here because the strategy we use is different from what the pharmaceutical and biotech industries now employ."

The study was supported by grants from the National Institutes of Health.

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>