Engineered pig stem cells bridge the mouse-human gap

Now, in a study appearing online in JBC, researchers have created a line of such reprogrammed stem cells from adult pigs. As pigs are large animals with a physiology very similar to humans, this work provides a valuable model to study the therapeutic potential of this new “induced pluripotent stem cell” (iPS) technology.

iPS cells have already been developed from both mice and humans. Both systems will help researchers answer many biological and genetic questions about these cells, but still leave a gap before clinical applications can begin. These iPS cells cannot be tested on humans before thorough safety and efficacy trials in animal models, but the size, physiology and short lifespan of mice makes them less than ideal for these trials.

Duanqing Pei and colleagues turned to a better pre-clinical model: pigs. These large animals share a remarkably similar biology to humans, as evidenced by their already extensive contributions to medicine, such as using pig insulin to treat diabetes or pig heart valves in transplant surgery. The research group modified the current iPS protocols to successfully generate a line of stem cells from a miniature Tibetan pig (whose smaller size would make breeding and maintenance easier). A biochemical analysis revealed these cells expressed the key proteins that would classify them as 'stem cells' and had the ability to differentiate into many other types of cells.

Importantly, these pig iPS cells more closely resembled human stem cells than other animals, confirming their value in pre-clinical studies. The researchers believe porcine iPS technology is an emerging and exciting field that should progress quickly and lead to many applications.

“GENERATION OF INDUCED PLURIPOTENT STEM CELL LINES FROM TIBETAN MINIATURE PIG” by Miguel Angel Esteban, Jianyong Xu, Jiayin Yang, Meixiu Peng, Dajiang Qin, Wen Li, Zhuoxin Jiang, Jiekai Chen, Kang Deng, Mei Zhong, Jinglei Cai, Liangxue Lai and Duanqing Pei

Corresponding Author: Duanqing Pei, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, China; phone: 86-20-3229-0706; email: pei_duanqing@gibh.ac.cn

Media Contact

Nick Zagorski EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors