Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered microbe may be key to producing plastic from plants

07.03.2019

With a few genetic tweaks, a type of soil bacteria with an appetite for hydrocarbons shows promise as a biological factory for converting a renewable -- but frustratingly untapped -- bounty into a replacement for ubiquitous plastics.

Researchers, like those at the University of Wisconsin-Madison-based, Department of Energy-funded Great Lakes Bioenergy Research Center, hoping to turn woody plants into a replacement for petroleum in the production of fuels and other chemicals have been after the sugars in the fibrous cellulose that makes up much of the plants' cell walls.


University of Wisconsin-Madison postdoctoral researcher Alex Linz examines a plate streaked with N. aromaticivorans (in yellow), a soil bacterium that could turn a renewable source -- lignin from plant cells -- into a replacement for petroleum-based plastics.

Photo by Chelsea Mamott, GLBRC

Much of the work of procuring those sugars involves stripping away lignin, a polymer that fills the gaps between cellulose and other chemical components in those cell walls.

That leaves a lot of useful cellulose, but also a lot of lignin -- which has never carried much value. Paper mills have been stripping lignin from wood to make paper for more than a century, and finding so little value in the lignin that it's simply burned in the mills' boilers.

"They say you can make anything from lignin except money," says Miguel Perez, a UW-Madison graduate student in civil and environmental engineering.

But they may not know Novosphingobium aromaticivorans as well as he does.

Perez, civil and environmental engineering professor Daniel Noguera and colleagues at GLBRC and the Wisconsin Energy Institute have published in the journal Green Chemistry a strategy for employing N. aromaticivorans to turn lignin into a more valuable commodity.

"Lignin is the most abundant source -- other than petroleum -- of aromatic compounds on the planet," Noguera says, like those used to manufacture chemicals and plastics from petroleum. But the large and complex lignin molecule is notoriously hard to efficiently break into useful constituent pieces.

Enter the bacterium, which was first isolated while thriving in soil rich in aromatic compounds after contamination by petroleum products.

Where other microbes pick and choose, N. aromaticivorans is a biological funnel for the aromatics in lignin. It is unique in that it can digest nearly all of the different pieces of lignin into smaller aromatic hydrocarbons.

"Other microbes tried before may be able to digest a few types of aromatics found in lignin," Perez says. "When we met this microbe, it was already good at degrading a wide range of compounds. That makes this microbe very promising."

In the course of its digestion process, the microbe turns those aromatic compounds into 2-pyrone-4,6-dicarboxylic acid -- more manageably known as PDC. By removing three genes from their microbe, the researchers turned the intermediate PDC into the end of the line. These engineered bacteria became a funnel into which the different lignin pieces go, and out of which PDC flows.

Bioengineers in Japan have used PDC to make a variety of materials that would be useful for consumer products.

"They have found out the compound performs the same or better than the most common petroleum-based additive to PET polymers -- like plastic bottles and synthetic fibers -- which are the most common polymers being produced in the world," Perez says.

It would be an attractive plastic alternative -- one that would break down naturally in the environment, and wouldn't leach hormone-mimicking compounds into water -- if only PDC were easier to come by.

"There's no industrial process for doing that, because PDC is so difficult to make by existing routes," says Noguera. "But if we're making biofuels from cellulose and producing lignin -- something we used to just burn -- and we can efficiently turn the lignin into PDC, that potentially changes the market for industrial use of this compound."

For now, the engineered variation on N. aromaticivorans can turn at least 59 percent of lignin's potentially useful compounds into PDC. But the new study suggests greater potential, and Perez has targets for further manipulation of the microbe.

"If we can make this pipeline produce at a sufficient rate, with a sufficient yield, we might create a new industry," Noguera says.

###

The Wisconsin Alumni Research Foundation has filed a patent application on this technology.

This research was funded by grants from the Department of Energy (BER DE-FC02-07ER64494 and DE-SC0018409) and the Chilean National Commission for Scientific and Technological Research.

--Chris Barncard, 608-890-0465, barncard@wisc.edu

Media Contact

Daniel Noguera
noguera@engr.wisc.edu
608-263-7783

 @UWMadScience

http://www.wisc.edu 

Daniel Noguera | EurekAlert!
Further information:
https://news.wisc.edu/engineered-microbe-may-be-key-to-producing-plastic-from-plants/

Further reports about: Energy cell walls microbe plastic plastic from plants

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>