Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-sensing switch discovery could have broad implications for Biology & Medicine

22.10.2012
Biochemists at The Scripps Research Institute (TSRI) have discovered a genetic sequence that can alter its host gene's activity in response to cellular energy levels.

The scientists have found this particular energy-sensing switch in bacterial genes, which could make it a target for a powerful new class of antibiotics. If similar energy-sensing switches are also identified for human genes, they may be useful for treating metabolism-related disorders such as type 2 diabetes and heart disease.

"This discovery adds a new dimension to our understanding of how cells sense and manage their energy levels, which is one of the most important processes in biology," said the study's senior author, Martha J. Fedor, a professor the departments of Chemical Physiology and Molecular Biology and a member of the Skaggs Institute for Chemical Biology at TSRI.

The findings are described online ahead of print on October 21, 2012, in the journal Nature Chemical Biology.

A Fuel Sensor

This type of gene-switching sequence is known as a riboswitch because it appears on the strand of ribonucleic acid (RNA) that is first transcribed from a gene's DNA. Unlike other known riboswitches, which have relatively limited functions, this one acts as a sensor for the basic molecular fuel that powers all living cells and controls many genes.

The newly discovered riboswitch detects a small molecule known as adenosine triphosphate (ATP), the standard unit of chemical energy in all known organisms on our planet. Scientists had thought that cells use only large and relatively complex proteins to sense these all-important energy molecules and adjust cell activities accordingly. No one had found ATP sensors among riboswitches, which can alter cell activity at a more fundamental level—usually by interrupting a gene's transcription from DNA.

Moreover, previously described riboswitches are relatively simple feedback sensors that affect narrow metabolic pathways. Most of them merely sense and adjust the expression rate of their own host gene. "This is the first riboswitch that is known to be involved in global metabolic regulation," said Fedor.

In recent years, the Fedor team had found hints that such a riboswitch could exist. Many RNA sequences with possible riboswitch activity had never been characterized, and several riboswitches in bacteria sense molecules that are closely related to ATP. Fedor and a graduate student in her laboratory, Peter Y. Watson, therefore set out to find bacterial riboswitches that could indeed sense ATP.

Caught in the Act

The task was more challenging than it might have seemed. Watson could not simply expose suspected riboswitches to ATP and see which ones stuck best to the energy molecules. ATP is present in high concentrations in cells, and its interactions with its known protein sensors are necessarily fleeting, low-affinity affairs. Interactions with a riboswitch would be expected to look the same. "Such interactions are really too weak to be detected using traditional methods," Watson said. But he found evidence that an RNA interaction with an ATP-like molecule would occur in a way that allows the brief coupling to be caught in the act—using a burst of ultraviolet radiation, which can create a strong chemical crosslink between two molecules.

In this way, he discovered a stretch of apparent ATP-binding RNA known as the ydaO motif. Watson performed structure-mapping analyses of ydaO to confirm that it binds to ATP and to determine precisely where it binds. Attaching ydaO to a "reporter" gene, he found that in bacterial cells, the reporter gene's expression level stayed low when ATP levels were normal and rose sharply when ATP levels dropped—as would be expected if ydaO is really an ATP-sensing riboswitch. Even in unaltered cells of a test bacterium, B. subtilis, levels of the genes that normally contain the ydaO motif rose and fell in the same way in response to changing ATP levels.

The ydaO motif occurs in the large subset of bacteria known as gram-positive bacteria. Across these bacterial species, it has been found, to date, on 580 separate genes. "These ydaO-regulated genes encode proteins that have a wide variety of functions, from cell wall metabolism to amino acid transport," Watson said. "It makes sense that a riboswitch in control of such disparate processes would be responding to a central metabolite such as ATP."

New Possibilities

The finding has basic scientific importance because it is the first known example of a riboswitch that binds ATP; it is also the first known riboswitch that has such broad regulatory functions. "It opens up the possibility that RNA switches are involved in the general regulation of metabolism," said Fedor.

The fact that ydaO motifs serve as "off-switches" for key bacterial genes also makes them a potential target for new antibiotics. "Hitting these riboswitches with a small-molecule, ATP-mimicking drug so that they can't turn on genes that promote bacterial growth and survival could be a viable approach," said Fedor.

Her laboratory will now search for other ATP-sensing riboswitches in bacteria and in higher organisms, including humans. A human ATP-sensing riboswitch, if targeted appropriately by drugs, might be able to alter cell activity in ways that help treat common metabolic disorders. Type 2 diabetes, which presently affects several hundred million people worldwide, is known to feature the improper regulation of ATP levels in cells.

Funding for the study, "The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis," was provided by the Skaggs Institute for Chemical Biology at TSRI.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>