Endocrine disrupting chemicals in baby teethers

“The good news is that most of the teethers we analyzed did not contain any endocrine disrupting chemicals. However, the presence of parabens in one of the products is striking because these additives are normally not used in plastic toys”, says Dr. Martin Wagner, of the Department Aquatic Ecotoxicology at the Goethe University.

The substances detected – methyl, ethyl and propyl parabens – can act like natural oestrogen in the body and, in addition, inhibit the effects of androgens such as testosterone. The EU Commission recently banned two parabens in certain baby cosmetics, because of concerns over their health effects.

“Our study shows that plastic toys are a source of undesirable chemicals. Manufacturers, regulatory agencies and scientists should investigate the chemical exposure from plastic toys more thoroughly”, Wagner concludes from the study.

The additives have only limited benefits for the quality of the product, but can represent a potential health issue. This is especially true for babies and infants, whose development is orchestrated by a delicately balanced hormonal control and who are more susceptible to chemicals exposures than adults.

Publication:
Elisabeth Berger, Theodoros Potouridis, Astrid Haeger, Wilhelm Püttmann and Martin Wagner: Effect-directed identification of endocrine disruptors in plastic baby teethers, in: Journal of Applied Toxicology, 18.5.2015, DOI: 10.1002/jat.3159

Information: Dr. Martin Wagner, Department Aquatic Ecotoxicology, Goethe University, Phone: +49 (0) 69 798-42149, wagner@bio.uni-frankfurt.de; Elisabeth Berger, Phone: +49 (0) 60516 1954-3117, elisabeth.berger@senckenberg.de

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto “Science for Society” and to this day continues to function as a “citizens’ university”.

Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main

Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Media Contact

Dr. Anke Sauter idw - Informationsdienst Wissenschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors