Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endocrine disrupting chemicals in baby teethers

21.05.2015

In laboratory tests, two out of ten teethers, plastic toys used to sooth babies’ teething ache, release endocrine disrupting chemicals. The findings were reported by researchers at the Goethe University in the current issue of the Journal of Applied Toxicology.

"The good news is that most of the teethers we analyzed did not contain any endocrine disrupting chemicals. However, the presence of parabens in one of the products is striking because these additives are normally not used in plastic toys", says Dr. Martin Wagner, of the Department Aquatic Ecotoxicology at the Goethe University.

The substances detected – methyl, ethyl and propyl parabens – can act like natural oestrogen in the body and, in addition, inhibit the effects of androgens such as testosterone. The EU Commission recently banned two parabens in certain baby cosmetics, because of concerns over their health effects.

"Our study shows that plastic toys are a source of undesirable chemicals. Manufacturers, regulatory agencies and scientists should investigate the chemical exposure from plastic toys more thoroughly", Wagner concludes from the study.

The additives have only limited benefits for the quality of the product, but can represent a potential health issue. This is especially true for babies and infants, whose development is orchestrated by a delicately balanced hormonal control and who are more susceptible to chemicals exposures than adults.

Publication:
Elisabeth Berger, Theodoros Potouridis, Astrid Haeger, Wilhelm Püttmann and Martin Wagner: Effect-directed identification of endocrine disruptors in plastic baby teethers, in: Journal of Applied Toxicology, 18.5.2015, DOI: 10.1002/jat.3159

Information: Dr. Martin Wagner, Department Aquatic Ecotoxicology, Goethe University, Phone: +49 (0) 69 798-42149, wagner@bio.uni-frankfurt.de; Elisabeth Berger, Phone: +49 (0) 60516 1954-3117, elisabeth.berger@senckenberg.de

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university".

Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main

Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

Further reports about: Endocrine Phone Science additives chemicals exposure function level of autonomy physics plastic

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>