Embryonic stem cells reveal oncogene's secret growth formula

In research published in the April 30th edition of Cell, a team of Whitehead Institute researchers describes a pausing step in the transcription process that serves to regulate expression of as many as 80% of the genes in mammalian cells.

Scientists have long known that DNA-binding transcription factors recruit the RNA polymerase Pol II (which prompts copying of DNA into mRNA protein codes) to promoters in order to kick off the transcription process. Now researchers in the lab of Whitehead Member Richard Young have found that additional factors recruited to the promoters serve to stop transcription in its tracks shortly after it's begun.

“It's like the engine's running, but the transmission is not engaged on that transcription apparatus,” says Young, who is also a professor of biology at MIT. “You need something to engage that transmission.”

It turns out that for a surprisingly large number of genes in embryonic stem cells, that “something” is the transcription factor c-Myc. This so-called pause release role for c-Myc is significant, as many of c-Myc's targets are genes in highly proliferative cells. Over-expression of c-Myc is a hallmark of a number of tumors, and it now appears that c-Myc's ability to release transcriptional pausing is linked with the hyper-proliferation that is characteristic of cancer cells.

“Our findings provide the molecular basis for loss of proliferation control in some cancers,” says Peter Rahl, a postdoctoral researcher in Young's lab and first author of the Cell paper.

Armed with this new understanding of c-Myc's role in controlling proliferation genes, Young and his colleagues have embarked on a search for drugs that could interrupt c-Myc's pause-release activity in tumors where it's over-expressed.

“Clearly, cancer cells are able to exploit mechanisms that normally operate in embryonic stem cells,” says Young, “so I expect further understanding of embryonic stem cell control mechanisms will give us additional insights into human disease mechanisms.”

This research was supported by the National Institutes of Health (NIH) and National Cancer Institute (NCI).

Written by Nicole Giese

Richard Young's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citation:
“c-Myc regulates transcriptional pause release”
Cell, April 30, 2010.
Peter B. Rahl (1), Charles Y. Lin (1,2), Amy C. Seila (3,4), Ryan A. Flynn (3), Scott McCuine (1), Christopher B. Burge (2), Phillip A. Sharp (2,3), Richard A. Young (1,2)
1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
3. Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
4. Present Address: Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142

Media Contact

Nicole Giese EurekAlert!

More Information:

http://www.wi.mit.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors