Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic development—lost in space?

16.11.2009
Experiments simulating zero-gravity conditions reveal developmental difficulties arising from mammalian reproduction in space

Despite other challenges, biological difficulties may be the primary obstacle to successful mammalian reproduction and development in orbit, according to new findings by Teruhiko Wakayama and his colleagues at the RIKEN Center for Developmental Biology in Kobe.

Wakayama’s research is primarily focused on cloning, but he has long sustained an interest in outer space. “I took the exam to be an astronaut more than ten years ago,” he says. Although his career ultimately followed a more earthbound path, an encounter with scientists working in space research provided the opportunity to tackle a long-standing question pertaining to life in outer space: can mammals reproduce successfully in zero-gravity?

Previous studies have demonstrated successful reproduction by fish, amphibians and birds in zero-gravity conditions (also called microgravity), and that already pregnant rats can deliver healthy offspring aboard a space shuttle. On the other hand, experiments from a 1979 mission indicated that rats can get impregnated in space, but are seemingly incapable of bringing these pregnancies to term—although it was unclear at which stage complications arose1.

Now, thanks to an apparatus known as a 3D clinostat, which simulates microgravity via continuous three-dimensional rotation, Wakayama and colleagues were able to study fertilization and the earliest stages of embryonic development under conditions that replicate space travel2.

They performed in vitro fertilization (IVF) experiments with mouse sperm and ova, both within the clinostat and at regular gravity (1G), and determine that microgravity had minimal effects on fertilization. It may prove detrimental to subsequent development, however. Microgravity-cultured embryos successfully reached the two-cell stage and yielded viable offspring upon implantation into female mice, but at a significantly lower rate than their 1G counterparts. The researchers observed more severe negative effects when embryos were transplanted following longer culture periods in the clinostat.

Microgravity led to an overall reduction in the rate of blastocyst formation after 96 hours of culture, and closer examination of these blastocysts revealed that the differentiation of embryonic cells into trophectoderm—the tissue that nourishes the embryo and ultimately contributes to placenta formation—was markedly impaired.

Given the successful development of non-mammalian embryos in microgravity, these findings were surprising, and Wakayama and colleagues intend to pursue further gravity-manipulation studies to zoom in on the source of the developmental problem. “We are planning to perform similar experiments at different gravities, such as Moon gravity (1/6G) or Mars gravity (1/3G),” he says. “I want to know how much gravity is necessary to perform normal reproduction.”

The corresponding author for this highlight is based at the Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6065

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>