Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive compounds of greenhouse gas isolated by Warwick chemists

18.09.2019
  • Nitrous oxide is a greenhouse gas and ozone depleting substance.
  • The ability to exploit this gas as a chemical reagent is an attractive prospect, both as an abundant feedstock and means to remediate the detrimental impact it has on the environment.
  • Researchers at the University of Warwick have prepared transition metal compounds of nitrous oxide that provide a conceptional foundation for its application in new value-added chemical processes.

Nitrous oxide (N2O) is a potent atmospheric pollutant. Although naturally occurring, anthropogenic N2O emissions from intensive agricultural fertilisation, industrial processes, and combustion of fossil fuels and biomass are a major cause for concern.


Nitrous Oxide Compound.

Credit: University of Warwick

Usage Restrictions: Only to be used in conjunction with this story

Researchers at the University of Warwick have isolated elusive transition metal compounds of N2O that provide clues into how it could be used in sustainable chemical technologies.

N2O is a powerful greenhouse gas, with a half life of 114 years in the atmosphere and global warming potential 300 times greater than carbon dioxide. It is also the dominant ozone depleting substance emitted in the 21st century.

As an abundant chemical feedstock, the use of N2O as a sustainable oxidant in synthetic organic chemistry is an attractive prospect, liberating environmentally benign dinitrogen (N2).

Such reactions are encumbered by the robust triatomic formulation of this gas, typically requiring forcing reaction conditions that are energy intensive and undesirable from a remediation perspective. The development of mild and selective alternatives is a longstanding ambition of research scientists, but has been met with little success.

In their paper 'Rhodium(I) Pincer Complexes of Nitrous Oxide' published in the journal Angewandte Chemie, researchers from the University of Warwick's Department of Chemistry have reported well-defined compounds of nitrous oxide that provide valuable insights into how this gas interacts with one of the most widely employed transition metals in organic synthesis.

The associated experimental data is the most comprehensive collected to date for any transition metal adduct, for which there are very few precedents. This work provides a fundamental reference point in the field and is likely to stimulate and guide future catalyst developments.

Dr Adrian Chaplin from the Department of Chemistry at the University of Warwick comments:

"Nitrous oxide is commonly known as laughing gas, but it's environmental impact is certainly nothing to laugh about and often overlooked altogether. As a chemical reagent its potential has yet to be fully harnessed, and to do so a sustainable manner is formidable challenge for the scientific community."

"In my team, we are trying to tackle this problem using a fundamental, bottom up, approach. The compounds that we have prepared represent the starting point of our journey, but the associated experimental data seems to be guiding us in the right direction and we are looking forward to where it takes us."

###

NOTES TO EDITORS

Paper available to view at: http://doi.org/10.1002/anie.201908333

High-res images available credit to the University of Warwick:

https://warwick.ac.uk/services/communications/medialibrary/images/september2019/gg.png

For further information please contact:

Alice Scott
Media Relations Manager - Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

Alice Scott | EurekAlert!
Further information:
https://warwick.ac.uk/newsandevents/pressreleases/elusive_compounds_of
http://dx.doi.org/10.1002/anie.201908333

Further reports about: N2O carbon dioxide fossil fuels greenhouse gas nitrous oxide transition metal

More articles from Life Sciences:

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

The spin state story: Observation of the quantum spin liquid state in novel material

09.07.2020 | Physics and Astronomy

New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH

09.07.2020 | Information Technology

Stress testing 'coral in a box'

09.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>