Using electrons to observe the structure of unstable nuclei

Observing the structure of collapsing unstable atomic nuclei using electrons is an experimental goal that has not been achieved anywhere in the world. Masanori Wakasugi, director of the Instrumentation Development Group at the RIKEN Nishina Center for Accelerator-Based Science (RNC), is working on this challenging issue.

The current theoretical model of the atomic nucleus has been constructed with major contributions from electron-scattering experiments, in which electrons are collided with stable atomic nuclei to visualize the nuclear structure.

In recent years, however, a wide range of experiments on the properties of unstable atomic nuclei has revealed a number of phenomena that are inconsistent with the current model of the atomic nucleus.

Radioisotope–electron scattering experiments in which electrons collide with unstable nuclei are indispensible in establishing the ultimate model of the atomic nucleus, which will yield a comprehensive understanding of both stable and unstable nuclei. Wakasugi and his colleagues are taking unique approaches to achieve this world-first experiment.

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors