Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrochemistry opens up novel access to important classes of substances

17.11.2017

Sustainable and efficient synthesis strategy helps overcome the problem of electrochemical polymer formation

Electrochemistry has undergone a renaissance in recent years and numerous research groups are currently working on the environmentally friendly production or conversion of molecules. However, despite the superiority of electrochemistry, its application to various molecules has been problematic.


A young researcher in Professor Waldvogel's team using a screening apparatus for parallel electrolysis optimization

photo/©: Alexander Sell


A young researcher in Professor Waldvogel's team working with the electrolysis equipment

photo/©: Alexander Sell

The electrolysis of highly reactive substances, for example, has so far only led to the formation of high-molecular weight products, i.e., polymers. This method of production was sometimes even used on purpose as in the examples of polythiophene and polyaniline, the latter also being known as aniline black.

Chemists at Johannes Gutenberg University Mainz (JGU) have now succeeded in overcoming the problem of electrochemical polymer formation and in developing a sustainable and efficient synthesis strategy for these important products for the first time.

In order to generate chemical reactions, electrochemistry uses electrical current instead of partly hazardous chemical reagents and thus without reagent waste. This environmentally-friendly method provides easy access to a number of compounds with high chemical, pharmaceutical, and material science potential, such as building blocks for co-catalysts in homogenous catalysis.

The research group led by Professor Siegfried Waldvogel from the Institute of Organic Chemistry at Mainz University have now developed a method to use this key technology with highly reactive substances. "Working with certain starting substances, electrochemistry always resulted in polymers. Now we can choose to bring together only two building blocks", explained Waldvogel. This strategy was developed in collaboration with Evonik Performance Materials GmbH.

However, it is not only the simplicity of this synthesis that is convincing, but also its environmental friendliness. The only "waste" produced is hydrogen, which is known as an environmentally friendly fuel. The key to success here is the use of a unique electrolyte system, which is extremely stable and can be reused after electrolysis, reinforcing the green aspect of this method. In addition, this extraordinary electrolyte is also the source of the high selectivity of these reactions. Therefore, a very simple electrolysis setup can be used.

In other words, the scientists succeeded for the first time in carrying out an electrochemical carbon-carbon cross-coupling of thiophenes with phenols. In another experiment, the oxidative cross-coupling of aniline derivatives was carried out, producing selectively a broad spectrum of biphenyl diamines. The papers were published in the journal Angewandte Chemie.

Publications:
Anton Wiebe et al.
Einfache und doppelte metall- und reagensfreie anodische C-C-Kreuzkupplung von Phenolen mit Thiophenen
Angewandte Chemie, 20 October 2017
DOI: 10.1002/ange.201708946
http://onlinelibrary.wiley.com/doi/10.1002/ange.201708946/abstract

Lara Schulz et al.
Reagens- und metallfreie anodische C-C-Kreuzkupplung von Anilinderivaten
Angewandte Chemie, 2 March 2017
DOI: 10.1002/ange.201612613
http://onlinelibrary.wiley.com/doi/10.1002/ange.201612613/abstract

Photos:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_elektrochemie_kupplung_01.jpg
A young researcher in Professor Waldvogel's team using a screening apparatus for parallel electrolysis optimization
photo/©: Alexander Sell

http://www.uni-mainz.de/bilder_presse/09_orgchemie_elektrochemie_kupplung_02.jpg
A young researcher in Professor Waldvogel's team working with the electrolysis equipment
photo/©: Alexander Sell

Contact:
Professor Dr. Siegfried R. Waldvogel
Institute of Organic Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26069
fax +49 6131 39-26777
e-mail: waldvogel@uni-mainz.de
http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/

Weitere Informationen:

http://www.uni-mainz.de/presse/aktuell/2784_ENG_HTML.php – press release "Scientists develop electro-organic synthesis that allows sustainable and green production of fine chemicals" (Oct. 9, 2017) ;
http://www.uni-mainz.de/presse/aktuell/1532_ENG_HTML.php – press release "Waste from paper and pulp industry supplies raw material for the development of new redox flow batteries" (May 11, 2017)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>