Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrifying science: New study describes conduction through proteins

01.11.2019

Amid the zoo of biomolecules essential to life, enzymes are among the most vital. Without these specialized proteins, which speed up the rates of chemical reactions, thousands of essential life processes, from cell growth and digestion to respiration and nerve function, would be impossible.

In new research, Stuart Lindsay and his colleagues investigate a recently discovered feat carried out by enzymes, and most likely, all proteins. Under proper conditions, they can act as superb conductors of electricity, permitting them to be incorporated into a range of electronic devices. "It is a way of plugging the amazing chemical diversity of enzymes directly into a computer," Lindsay says.


A DNA polymerase--an enzyme that synthesizes DNA molecules from nucleotide building blocks--is poised between a pair of electrodes. Binding of nucleotides by the polymerase causes conductance spikes, which may be characteristic of the specific molecules bound by the polymerase. Such a device, in theory, could carry out rapid, accurate, low cost DNA sequencing, and may have many additional applications in medical diagnostics, industrial production and other areas.

Credit: Lindsay lab

While the role of protein conductance in nature remains a matter of mystery and speculation, harnessing this phenomenon for human use will likely open new avenues for biochemical sensing devices, smart industrial production and new innovations in medical diagnostics.

Perhaps most exciting, electrical conductance through a special type of enzyme may signal a significant advance for DNA sequencing. Using a DNA polymerase, nature's own high-resolution DNA reader, in such a device could potentially allow for lightning-fast sequencing of entire human genomes with unprecedented accuracy at very low cost. The new study "opens the Pandora's box of looking at the function of any enzyme in a computer chip."

Current affairs

Authors of the new study describe the tricks they used to affix a DNA polymerase to a pair of electrodes and the resulting current spikes associated with the enzyme successively binding and releasing target DNA nucleotides. The successful demonstration of enzyme conductance paves the way for eventually mounting arrays of proteins onto computer chips, where they can act as biological parallel processors for a variety of tasks.

"Enzymes are incredible molecules that carry out chemical reactions that just wouldn't happen otherwise," Lindsay says. To give a sense of the power of these molecules, certain reactions essential to life processes, unfolding thousands of times per second, would require millennia to occur in the absence of enzymes.

Lindsay directs the Biosedign Center for Single Molecule Biophysics at Arizona State University. The center's primary research focuses on science at the nexus of molecular medicine and nanotechnology.

His group's findings appear in the forthcoming edition of the journal ACS Nano.

Proteins as conductors

Until quite recently, proteins were regarded strictly as insulators of electrical current flow. Now, it seems, their unusual physical properties may lead to a condition in which they are sensitively poised between an insulator and a conductor. (A phenomenon known as quantum criticality may be at the heart of their peculiar behavior.)

Indeed, in earlier research, Lindsay demonstrated strong electrical conductance through a protein captured between a pair of electrodes. The new research carries the investigations of protein conductance a step further. Previously, the protein was hooked up via its two so-called active sites. These are the regions of a protein that bind selected molecules, often resulting in a conformational change in the molecule's complex 3D structure and the completion of the protein's given task.

This time, the biomolecule was sensitively wired to the electrodes by means of alternate binding sites on the enzyme, leaving the active sites available to bind molecules and carry out natural protein function.

Nature's Kindle

The enzyme molecule chosen for the experiments is one of the most important for life. Known as a DNA polymerase, this enzyme binds with successive nucleotides in a length of DNA and generates a complimentary chain of nucleotides, one by one. This versatile nanomachine is used in living systems for copying DNA during cell replication as well as for repairing breaks or other insults to the DNA.

The study describes techniques for affixing the DNA polymerase to electrodes so as to generate strong conductance signals by means of two specialized binding chemicals known as biotin and streptavidin. When one electrode was functionalized using this technique, small conductance spikes were generated as the DNA polymerase successively bound and released each nucleotide, like a grasping hand catching and releasing a baseball. When both electrodes were outfitted with streptavidin and biotin, much stronger conductance signals, measuring 3-5 times as large, were observed.

The idea for leveraging a polymerase to carry out rapid DNA sequencing has been with Lindsay for awhile. He had considered using it in earlier devices he created in which sections of DNA were fed through narrow tunnel junctions. "Wouldn't it be neat if you could put a pair of electrodes inside of polymerases because the polymerase grabs the DNA and chugs it through the junction. If you had a readout mechanism embedded in the polymerase, you've got the ideal sequencing machine."

The new method hopes to take a different approach, using the polymerase's own speed-reading expertise to provide a readout of nucleotides through conductance spikes specific to each of the 4 DNA bases. In practice, a number of design hurdles must be overcome. Proper attachment of the polymerase for electrical conductance is a delicate affair and involved much trial and error. Binding sites must be engineered at specific domains that do not affect protein folding and function and connections had to be devised to prevent the enzyme itself from making contact with the electrodes. The use of biotin for binding the molecule also appears to be critical for high conductance. Biotin binding a pocket of the streptavidin appears to help drive electron transport deep into the protein interior, thereby maximizing conductance.

Separating conductance signals registering each successive DNA base from background noise and random motions of the contact points for the enzyme has also proven challenging and sophisticated machine learning algorithms are being brought to bear to clarify the conductance readouts. Lindsay believes many of these noise issues will be resolved when the polymerases are incorporated into properly isolated and sealed chips holding the enzyme rigidly in place.

Enzyme frontiers

The first complete human genome was a milestone for science and medicine. The herculean effort by the Human Genome Project consumed 13 years of labor at a cost of a billion dollars. Now the floodgates to a new era of protein bioelectronics may be opening, with many surprises likely in store.

If remaining technical hurdles can be overcome, DNA sequencing could be carried out at the breakneck speed of a functional DNA polymerase, or around a hundred nucleotides per second. "If you put 10,000 molecules on a chip--not a hard thing to do--you'll sequence a whole genome in under an hour," Lindsay says

Video: https://eurekalert.org/multimedia/pub/215750.php?from=446180

Written by: Richard harth
Senior Science Writer: Biodesign Institute
richard.harth@asu.edu

http://asunews.asu.edu/ 

Richard Harth | EurekAlert!
Further information:
https://biodesign.asu.edu/news/electrifying-science-new-study-describes-conduction-through-proteins

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
12.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
12.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>