Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018

Researchers from Graduate School of Bio-Applications and Systems Engineering at Tokyo University of Agriculture and Technology (TUAT) have sped up the movement of electrons in organic semiconductor films by two to three orders of magnitude. The speedier electronics could lead to improved solar power and transistor use across the world, according to the scientists.

They published their results in the September issue of Macromolecular Chemistry and Physics, where the paper is featured on the cover.

Led by Kenji Ogino, a professor at Graduate School of Bio-Applications and Systems Engineering at TUAT, Japan, the team found that adding polystyrene, commonly known as Styrofoam in North America, could enhance the semiconducting polymer by allowing electrons to move from plane to plane quickly.


Chemical structure of poly(P3HT)-b-(PSt) and a diagram of Plausible hole transporting paths in P3HT-b-PSt.

Credit: Figure adapted with permission from the front cover of Macromol. Chem. Phys. 18/2018. Copyright © 2018, John Wiley and Sons

The process, called hole mobility, is how electrons move through an electric field consisting of multiple layers. When a molecule is missing an electron, an electron from a different plane can jump or fall and take its place.

Through various imaging techniques, it's fairly easy to follow the electron trail in the crystal-based structures. In many semiconducting polymers, however, the clean, defined lines of the crystalline skeleton intertwine with a much more difficult-to-define region. It's actually called the amorphous domain.

"[Electrons] transport in both crystalline and amorphous domains. To improve the total electron mobility, it is necessary to control the nature of the amorphous domain," Ogino said. "We found that hole mobility extraordinarily improved by the introduction of polystyrene block accompanied by the increase of the ratio of rigid amorphous domain."

The researchers believe that the way the crystalline domain connects within itself occurs most effectively through the rigid amorphous domain. The addition of polystyrene introduced more amorphous domain, but contained by flexible chains of carbon and hydrogen atoms. Even though the chains are flexible, it provides rigidity, and some degree of control, to the amorphous domain.

Electrons moved two to three times quicker than normal.

"The introduction of a flexible chain in semicrystalline polymers is one of the promising strategies to improve the various functionalities of polymer films by altering the characteristics of the amorphous domain," Ogino said. "We propose that the rigid amorphous domain plays an important role in the hole transporting process."

Enhanced hole mobility is a critical factor in developing more efficient solar devices, according to Ogino. Next, Ogino and the researchers plan to examine how the enhanced hole mobility affected other parameters, such as the chemical composition and position of the structures within the polymer film.

###

The rest of the paper authors are Eri Tomita, Kyusun Kim, Kazushi Minegishi, Akitaka Nakamura, and Shinji Kanehashi. They are all affiliated with Graduate School of Bio-Applications and Systems Engineering at TUAT.

This work was partially funded by the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

About Tokyo University of Agriculture and Technology

Tokyo University of Agriculture and Technology (TUAT) is a distinguished university in Japan dedicated to science and technology.

TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship.

For more information, please visit http://www.tuat.ac.jp/en/.

Original publication:

Enhancement of Out-of-Plane Hole Mobility in Poly(3-Hexylthiophene)-b-Poly(styrene) Film. Eri Tomita, Kyusun Kim, Kazushi Minegishi, Akitaka Nakamura, Shinji Kanehashi, Kenji Ogino.
Macromolecular Chemistry and Physics, 219 (18), 1800186-, 2018
DOI: 10.1002/macp.201800186

Contact:

Kenji Ogino
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan
kogino@cc.tuat.ac.jp

For more information about the Ogino laboratory, please visit http://web.tuat.ac.jp/~oginolab/English/Eng-front.htm

Yutaka Nibu | EurekAlert!
Further information:
http://dx.doi.org/10.1002/macp.201800186

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>