Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective treatment for rare blood disorder

11.01.2019

Anyone who survives an acute episode of the rare blood disorder TTP is often left with long-term consequences, especially neurological damage. An international study, with the participation of the Department of Hematology of Bern University Hospital, was now able to verify the effectiveness of a new innovative treatment.

The life-threatening blood disorder thrombotic thrombocytopenic purpura (TTP) is rare (2-3 people out of every million per year) and affects mainly young, otherwise healthy people – women more frequently than men. TTP will lead to death if not treated within a few days.


Blood smear of a TTP patient: red blood cells are injured in the microcirculation, partially occluded by VWF-platelet clumps and compensatory reticulocytosis. Platelets are largely lacking

Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital

In healthy individuals, the protein scissor ADAMTS13 cleaves ultra large von Willebrand factor (VWF) multimers. Smaller VWF multimers are less sticky, do not bind platelets spontaneously and thus formation of blood clots in blood vessels is prevented.

In TTP, ADAMTS13 is lacking due to circulating autoantibodies. In the absence of VWF size regulation, platelets are consumed in VWF-platelet clots, that occlude the microcirculation. Blood circulation to end organs is decreased, resulting in heart attack, stroke and kidney failure. Hence TTP is also been refered to as “clumping plague”.

So far, standard treatment of acute episodes of TTP consists of a daily plasma exchange (to remove autoantibodies and replenish ADAMTS13) in combination with immunsuppressive drugs (to inhibit autoantibody formation).

Nevertheless, 10 - 20 percent of patients die during an acute episode. In addition, more than half of the survivors have permanent organ damage and dysfunction, particularly in the form of neurological deficits, and frequently experience relapses.

Rapid control of the disorder with lower rate of relapses

A major international study, with the participation of the Department of Hematology of Bern University Hospital, was published on January 9, 2019, in the New England Journal of Medicine (NEJM). The study was able to confirm the effectiveness of an innovative TTP treatment. The studied anti-VWF nanobody, caplacizumab, was shown to effectively prevent VWF-platelet clumping and thus protect the end organs from further depriviation of blood circulation.

145 TTP patients partcipated in this randomized Phase III study, 72 received the nanobody during the plasma exchange treatment and for 30 days thereafter, 73 received a placebo for the same period of time. In 75 percent of patients who received the study drug, the acute phase of TTP ended after 2.95 days, compared to 4.5 days with the conventional treatment.

Furthermore, the patients required fewer plasma exchange sessions (median 5 vs. 7), and could be discharged earlier. The side-effects were comparable in both study arms, although mild bleeding symptoms occurred more frequently with the new compound (65% compared to 48% with placebo). The study was able to confirm the promising data of the Phase II study, in which the Bern-based Hematology Department had also participated.

Long-term research topic at the Bern University Hospital and Bern University

The Department of Hematology at the Bern University Hospital and Bern University (Hematology Research Group, Department of BioMedical Research) have been researching TTP and ADAMTS13 since the mid-1990s. This resarch was initiated by Prof. em. Dr. phil nat. Miha Furlan and Prof. em. Dr. med. Bernhard Lämmle with the discovery of the von Willebrand factor-cleaving protease (now ADAMTS13), and the observation of its deficiency in TTP, and is currently headed by Prof. Dr. med. Johanna Kremer Hovinga. Since 2010 she has been involved in developing the new treatment approach for TTP, which will be available to all TTP patients in the future.

Wissenschaftliche Ansprechpartner:

Prof. Dr. med. Johanna A. Kremer Hovinga Strebel, Senior Consulting Physician, Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Johanna.Kremer@insel.ch

Originalpublikation:

DOI: 10.1056/NEJMoa1806311

Weitere Informationen:

https://www.nejm.org/doi/full/10.1056/NEJMoa1806311

Monika Kugemann | idw - Informationsdienst Wissenschaft
Further information:
http://www.insel.ch

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>