Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More effective method of imaging proteins

06.03.2012
Using a unique facility in the US, researchers at the University of Gothenburg have found a more effective way of imaging proteins. The next step is to film how proteins work – at molecular level.
Mapping the structure of proteins and the work they do in cells could be the key to cures for everything from cancer to malaria. Last year Richard Neutze, professor of biochemistry at the University of Gothenburg, and his research group were among the first in the world to image proteins using very short and intensive X-ray pulses.

In a new study published in Nature Methods, the method has been tested on a new type of protein, with good results.

“To put it simply, we’ve developed a new method of creating incredibly small protein crystals,” says Linda Johansson, doctoral student at the Department of Chemistry and Molecular Biology and lead author of the article. “We’ve also shown that it’s possible to use very small crystals to determine a membrane protein structure.”

Could become standard
There are two major challenges when it comes to imaging proteins: the first is to create the right sized protein crystals, and the second is to irradiate them in such a way that they do not disintegrate. Although Sweden has a facility for synchrotron-generated X-ray radiation – Maxlab in Lund – this type of technology is not sufficiently light-intensive and therefore requires large protein crystals which take several years to produce.
Richard Neutze was one of the researchers to float the idea that it might be possible to image small protein samples using free-electron lasers which emit intensive X-ray radiation in extremely short pulses – shorter than the time it takes light to travel the width of a human hair. This kind of facility has been available in California since 2009, and it is this facility that was used for the study.

“Producing small protein crystals is easier and takes less time, so this method is much faster,” says Linda Johansson. “We hope that it’ll become the standard over the next few years. X-ray free-electron laser facilities are currently under construction in Switzerland, Japan and Germany.”

365,000 images
Carried out by researchers from Sweden, Germany and the US, the study investigated a membrane protein from a type of bacterium that lives off sunlight. It is important to investigate membrane proteins as they transport substances through the cell membrane and thus take care of communication with the cell’s surroundings and other cells.

“We’ve managed to create a model of how this protein looks,” she says. “The next step is to make films where we can look at the various functions of the protein, for example how it moves during photosynthesis.”

A key discovery was that far fewer images are needed to map the protein than previously believed. Using a free-electron laser it is possible to produce around 60 images a second, which meant that the team had over 365,000 images at its disposal. However, just 265 imageswere needed to create a three-dimensional model of the protein.

Bibliographic data
Journal: Nature Methods
Title: Lipidic phase membrane protein serial femtosecond crystallography
Authors: Linda C Johansson, David Arnlund, Thomas A White, Gergely Katona, Daniel P DePonte, Uwe Weierstall, R Bruce Doak, Robert L Shoeman, Lukas Lomb, Erik Malmerberg, Jan Davidsson, Karol Nass, Mengning Liang, Jakob Andreasson, Andrew Aquila, Saša Bajt, Miriam Barthelmess, Anton Barty, Michael J Bogan, Christoph Bostedt, John D Bozek, Carl Caleman, Ryan Coffee, Nicola Coppola, Tomas Ekeberg
Link to article: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1867.html

For more information, please contact. Linda Johansson
E-mail: linda.johansson@chem.gu.se
Telephone: 031-786 32 44

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1867.html

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>