Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective method for correcting various CNS pathologies developing under oxygen deficiency

27.11.2019

Scientists from Russia and Germany examined the role of neuronal kinome representatives in the implementation of adaptation mechanisms of the central nervous system under the influence of ischemia factors

Hypoxia is a key factor that accompanies most brain pathologies, including ischemia and neurodegenerative diseases. Reduced oxygen concentration results in irreversible changes in nerve cell metabolism that entails cell death and destruction of intercellular interactions. Since neural networks are responsible for the processing, storage and transmission of information in the brain, the loss of network elements can lead to dysfunction of the central nervous system and, consequently, the development of neurological deficiency and the patient's severe disability.


Glial cell line-derived neurotrophic factor.

Credit: Lobachevsky University

This is the reason why the world's neurobiological community is currently involved in an active search for compounds that can prevent the death of nerve cells and support their functional activity under stress.

According to Maria Vedunova, Director of the Institute of Biology and Biomedicine at Lobachevsky University (UNN), the Institute's researchers propose to use the body's own potential to combat hypoxia and its consequences.

"Our particular interest is in the glial cell line-derived neurotrophic factor (GDNF). These signal molecules take an active part in the growth and development of nerve cells in the embryonic period, and they are also involved in the implementation of protective mechanisms and adaptation of brain cells when exposed to various stressors in adulthood," Maria Vedunova notes.

By applying advanced techniques for the study of the structure and functional activity of brain neural networks, a team of researchers from the Lobachevsky State University of Nizhny Novgorod and from the Institute of Cell Biology and Neurobiology at the Charité University Hospital in Berlin have shown that activation of the neurotrophic factor GDNF prevents the death of nerve cells and helps to maintain neural network activity after hypoxic injury. Of particular significance are the data that identify key players in the molecular cascades responsible for the implementation of the GDNF protective effect, namely, the RET, AKT1, Jak1 and Jak2t enzyme kinases.

"Thanks to the results already obtained, Lobachevsky University scientists have significantly advanced in developing the theoretical basis for a new method for correcting the hypoxic conditions of the central nervous system. The next stage of the work will be focused on studying the possibility of neurotrophic factor GDNF activation in experimental animals in a simulated hypoxic damage," continues Maria Vedunova.

It was shown by the researchers that activation of the glial cell line-derived neurotrophic factor helps protect brain cells from death during hypoxic damage and maintain the function of neural networks in the long term after the damaging effects.

A thorough understanding of the principles of work of neural networks subjected to hypoxic damage and of the protective action mechanisms of biologically active molecules of the body (the neurotrophic factor GDNF) can provide the basis for developing an effective method for correcting various CNS pathologies developing under oxygen deficiency.

The obtained results are of a fundamental nature, but they can be an important element in the comprehensive research aimed at developing new methods of diagnosis and treatment of CNS hypoxic conditions, which undoubtedly has great commercial potential.

###

This research was supported by a grant from the Russian Science Foundation, and the intermediate results of studies were published in the journal Oxidative Medicine and Cellular Longevity (journal impact factor 5.392): https://www.hindawi.com/journals/omcl/2019/1036907/

Media Contact

Nikita Avralev
pr@unn.ru

http://www.unn.ru/eng/ 

Nikita Avralev | EurekAlert!

More articles from Life Sciences:

nachricht Residues in fingerprints hold clues to their age
23.01.2020 | American Chemical Society

nachricht Here, there and everywhere: Large and giant viruses abound globally
23.01.2020 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Physicists trap light in nanoresonators for record time

23.01.2020 | Physics and Astronomy

The easy route the easy way: New chip calculates the shortest distance in an instant

23.01.2020 | Information Technology

DYNAFLEX® at e-World 2020

23.01.2020 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>