Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective method for correcting various CNS pathologies developing under oxygen deficiency

27.11.2019

Scientists from Russia and Germany examined the role of neuronal kinome representatives in the implementation of adaptation mechanisms of the central nervous system under the influence of ischemia factors

Hypoxia is a key factor that accompanies most brain pathologies, including ischemia and neurodegenerative diseases. Reduced oxygen concentration results in irreversible changes in nerve cell metabolism that entails cell death and destruction of intercellular interactions. Since neural networks are responsible for the processing, storage and transmission of information in the brain, the loss of network elements can lead to dysfunction of the central nervous system and, consequently, the development of neurological deficiency and the patient's severe disability.


Glial cell line-derived neurotrophic factor.

Credit: Lobachevsky University

This is the reason why the world's neurobiological community is currently involved in an active search for compounds that can prevent the death of nerve cells and support their functional activity under stress.

According to Maria Vedunova, Director of the Institute of Biology and Biomedicine at Lobachevsky University (UNN), the Institute's researchers propose to use the body's own potential to combat hypoxia and its consequences.

"Our particular interest is in the glial cell line-derived neurotrophic factor (GDNF). These signal molecules take an active part in the growth and development of nerve cells in the embryonic period, and they are also involved in the implementation of protective mechanisms and adaptation of brain cells when exposed to various stressors in adulthood," Maria Vedunova notes.

By applying advanced techniques for the study of the structure and functional activity of brain neural networks, a team of researchers from the Lobachevsky State University of Nizhny Novgorod and from the Institute of Cell Biology and Neurobiology at the Charité University Hospital in Berlin have shown that activation of the neurotrophic factor GDNF prevents the death of nerve cells and helps to maintain neural network activity after hypoxic injury. Of particular significance are the data that identify key players in the molecular cascades responsible for the implementation of the GDNF protective effect, namely, the RET, AKT1, Jak1 and Jak2t enzyme kinases.

"Thanks to the results already obtained, Lobachevsky University scientists have significantly advanced in developing the theoretical basis for a new method for correcting the hypoxic conditions of the central nervous system. The next stage of the work will be focused on studying the possibility of neurotrophic factor GDNF activation in experimental animals in a simulated hypoxic damage," continues Maria Vedunova.

It was shown by the researchers that activation of the glial cell line-derived neurotrophic factor helps protect brain cells from death during hypoxic damage and maintain the function of neural networks in the long term after the damaging effects.

A thorough understanding of the principles of work of neural networks subjected to hypoxic damage and of the protective action mechanisms of biologically active molecules of the body (the neurotrophic factor GDNF) can provide the basis for developing an effective method for correcting various CNS pathologies developing under oxygen deficiency.

The obtained results are of a fundamental nature, but they can be an important element in the comprehensive research aimed at developing new methods of diagnosis and treatment of CNS hypoxic conditions, which undoubtedly has great commercial potential.

###

This research was supported by a grant from the Russian Science Foundation, and the intermediate results of studies were published in the journal Oxidative Medicine and Cellular Longevity (journal impact factor 5.392): https://www.hindawi.com/journals/omcl/2019/1036907/

Media Contact

Nikita Avralev
pr@unn.ru

http://www.unn.ru/eng/ 

Nikita Avralev | EurekAlert!

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>