Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Imitation

08.03.2010
New chitinase inhibitors

The chitin-degrading enzymes known as chitinases are not just important to insects with chitin shells and to their predators, they also seem to be involved in the establishment of parasites in the human body and in asthmatic diseases.

An international team led by Stephen G. Withers has now developed a novel chitinase inhibitor. As the researchers report in the journal Angewandte Chemie, the compound imitates the structure of an intermediate formed in the enzymatic degradation of chitin.

Insects, spiders, scorpions, crabs—many animals have a shell made of chitin. In addition, chitin is found in the cell walls of fungi, dust mites, and various parasites. Chitin is regularly built up and degraded at certain phases in the life cycles of these organisms. Chitin molecules are long chains of nitrogen-containing sugar components, whose degradation is carried out by enzymes in a family known as chitinases. “Chitinase inhibitors are potential insecticides and fungicides,” explains Withers. “They are also interesting as pharmaceuticals. They could stop the transmission of the malaria parasite to humans and help to fight trichomoniasis infections.” Furthermore, there seems to be a connection between asthma and an elevated level of chitinase-like enzymes in the lungs. Chitinase inhibitors may thus have potential for use in asthma treatment.

The team of scientists from the University of British Columbia (Vancouver, Canada), the University of York (UK), and the State University of New Jersey (USA) has now developed a new group of chitinase inhibitors that are more effective than previous inhibitors. Their synthetic route is relatively simple and is designed to be used on a larger scale as well.

The core structural element is a ring-shaped sugar building block fused with a thiazoline, a five-membered ring made from one nitrogen, one sulfur, and three carbon atoms. “This arrangement imitates a cyclic intermediate formed in the enzymatic degradation of chitin, and docks to the binding sites on chitinase enzymes,” explains Withers. “To augment the inhibitory effect, we added two or three additional sugar units that resemble those in chitin (chitobiose or chitotriose). Further modifications ensure that the inhibitors themselves cannot be degraded, so they remain effective for a long time.” The inhibitors could be a good starting point for the development of novel medications and further research into the role of chitinases in biological systems.

Author: Stephen G. Withers, University of British Columbia, Vancouver (Canada), http://www.chem.ubc.ca/personnel/faculty/withers/

Title: Chitinase Inhibition by Chitobiose and Chitotriose Thiazolines

Angewandte Chemie International Edition, Permalink: http://dx.doi.org/10.1002/anie.200906644

Stephen G. Withers | Angewandte Chemie
Further information:
http://www.chem.ubc.ca/personnel/faculty/withers/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Something old, something new in the Ocean`s Blue
13.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>