Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible Dormice: The older they get, the more they rejuvenate their cells

24.11.2016

The shortening of telomeres in cells was thought to be an important biomarker for lifespan and aging. The edible dormouse (Glis glis), a small hibernating rodent, now turns everything upside down. In contrast to humans and other animals, telomere length in the edible dormouse significantly increases in the second half of its life, as researchers from Vetmeduni Vienna found out just recently. The study was published in Scientific Reports.

“As far as I know, no previous study has reported such an effect of age on telomere lengthening,” says Franz Hoelzl, one of the authors. Apparently, this unique pattern is due to the peculiar life history of this species. They can reach maximum lifespan of 13 years, which is a Methuselah-like age for a small rodent.


Relative telomere length can be analysed using extracted DNA of collected buccal mucosa.

Vetmeduni Vienna

“This extreme lifespan is almost certainly related to their ability to rejuvenate telomeres”, says Hoelzl. Telomeres are the endcaps of chromosomes, which prevent, together with proteins, the degradation of coding DNA sequences.

Telomeres in small animals shorten fast, but in edible dormice they even grow

In normal somatic cells, telomeres are shortened with every cell division. Besides, oxidative stress has a strong effect on telomere erosion. However, the rate of telomere shortening differs between species. For instance, it has been shown before that telomeres in fast-aging, short-lived wild animals erode more rapidly than in slow-aging, long-lived species.

Earlier this year, the author Franz Hoelzl and his colleagues from Vetmeduni Vienna showed that edible dormice has the capability to re-elongated its telomeres, given that food availability is high. This finding raised the question about the long-term balance between telomere attrition and repair.

The relative telomere length (RTL) gave evidence

To find an answer, the team started a long-tem study on changes in telomere length. In the Vienna Woods in Austria they regularly checked 130 nest-boxes that are occupied by free-living dormice. The researchers collected the rodent’s buccal mucosa for three years. Thus, they could extract the DNA and determine the relative telomere length for each dormouse individually using qPCR. With this method scientists can define the amount of target DNA compared to a reference gene of the same sample.

Elongation does not only occur, it even increases in older edible dormice

“We found out that the telomeres were shortened in young animals but length significantly increased once the dormice were six years old or older. To top it all, the rate of telomere elongation also increased with increasing age of the dormice”, says Franz Hoelzl.

Among the variables tested, only age significantly affected RTL in a non-linear pattern with telomere length decreasing in younger and increasing in older dormice. Hoelz says, “Telomere length was not affected by time of the year, sex, body mass or reproductive activity at the time of sampling.”

Nevertheless, the analysis of long term reproduction-data of the same population shows that the probability to reproduce also increases with age. This finding could indicate that telomere elongation is actually part of the preparation for upcoming reproductive events, as gestation and lactation could increase oxidative stress and the animals may attempt to protect their genome.

Service:
The article "Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis)“ by Franz Hoelzl, Steve Smith, Jessica S. Cornils, Denise Aydinonat, Claudia Bieber and Thomas Ruf will be published embargoed in Scientific Reports (Nature Publishing Group) today, 24th of November. Embargo ends at 11:00am CET.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Franz Hölzl
Research Institute of Wildlife Ecology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-7273
franz.hoelzl@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>