Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eclectic Enzymes

02.09.2010
Easily Modified Building Blocks for Drug Design

In the pursuit of biologically active compounds, it is often necessary to be able to control the stereochemistry at predefined positions in a molecular skeleton. The search for ways to prepare chiral building blocks with known configuration that also show structural differentiation is important.

Italian scientists working with Elisabetta Brenna have developed a technique to separate individual stereoisomers of building blocks that can be easily integrated into biologically active molecules. As the scientists from Politecnico di Milano, Milano, Italy, report in the European Journal of Organic Chemistry, their technique relies on the use of enzymes.

The specific activity of a biologically relevant molecule is often dependent on its stereochemistry (i.e., the spatial arrangement of its atoms). However, most compounds showing biological activity have complex structures, making their synthesis difficult. Moreover, compounds with differing stereochemistries can show different activities. Thus, it is sometimes desirable to prepare a range of compounds with the same structural backbone, but having different spatial arrangements of their atoms. The use of configurationally defined building blocks is attractive, but a method to obtain all the stereoisomers of a given building block is thus required.

Brenna and her colleagues have developed a method that allows a mixture of isomers to be differentiated, and it depends on the use of the enzyme lipase PS. The resolution of the stereoisomers relies on the preferential reaction of the enzyme with only one isomer, thereby creating a product mixture containing the desired compound and a mixture of the unreacted isomers. The desired product can be easily separated from the unreacted mixture, which can then be resubjected to the enzyme to undergo further differentiation. In this way, a wide range of building blocks with differing and known stereochemistries can be prepared.

The authors then showed the applicability of their method by incorporating their configurationally defined building blocks into biologically active compounds. Using simple and straightforward organic chemistry transformations, the authors were able to embed their building blocks into two classes of compounds that are of biological interest. Importantly, scientists can now easily examine the biological activities of all the different stereoisomers of a given compound. Thus, the Italian team is well on their way to helping scientists screen a diverse range of potential drugs that may lead to the treatment, cure, prevention, or diagnosis of diseases.

Author: Elisabetta Brenna, Politecnico di Milano (Italy), http://www.chem.polimi.it/people/faculty/elisabetta-brenna/

Title: Oxygenated Stereotriads with Definite Absolute Configuration by Lipase-Mediated Kinetic Resolution: De Novo Synthesis of Imino Sugars and 6-Deoxy-C-glycosides

European Journal of Organic Chemistry , 2010, No. 23, 4468–4475, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000558

Elisabetta Brenna | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.chem.polimi.it/people/faculty/elisabetta-brenna/

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>