Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early trigger for type 1 diabetes found in mice

28.08.2008
Scientists at the Stanford University School of Medicine are shedding light on how type-1 diabetes begins.

Doctors have known the disease is caused by an autoimmune attack on the pancreas, but the exact trigger of the attack has been unclear. Now, a new study in mice implicates the immune signal interferon-alpha as an early culprit in a chain of events that upend sugar metabolism and make patients dependent on lifelong insulin injections.

"We never considered that interferon-alpha could be a major player in early type-1 diabetes," said Qing Li, MD, PhD, a postdoctoral scholar in microbiology and immunology who was the primary author of a paper describing the new result. The study is published in today's issue of Proceedings of the National Academy of Sciences. "This was a pretty surprising finding."

Interferon-alpha normally helps the body fight viruses. Synthetic interferon-alpha is injected as a drug for treating hepatitis C and some forms of cancer, Li noted.

"Everybody's been wondering what process initiates type-1 diabetes," said Hugh McDevitt, MD, professor of microbiology and immunology and the study's senior author.

Type-1 diabetes is caused by complete deficiency of insulin, a hormone that helps the body store and burn sugar. About 1 million Americans have the disease, also known as juvenile diabetes because it tends to be diagnosed in children and young adults, for which there is no effective prevention or cure. Diabetes is a leading cause of heart disease, blindness, limb amputations and kidney failure.

The early pathology of type-1 diabetes is hard to study in humans, McDevitt said, because it's almost impossible to predict who will get the disease and when it will develop. Scientists have relied on animal models, such as diabetic mice, because they predictably develop high blood sugar and other features of the human disease.

To pinpoint interferon-alpha, Li and McDevitt worked backwards from what they knew about how type-1 diabetes starts. Prior studies in diabetic mice showed a pathogenic role for immune cells called CD4+ T cells. These cells are an early player in the immune attack on the body's insulin factories, pancreatic beta cells. The scientists used silicon gene-chip technology to measure which genes are revved up in the CD4+ T cells just before they assault the pancreas. The measurements fell into a pattern: many of the upregulated genes were known to be controlled by interferon-alpha.

To confirm the signal's nefarious role, the researchers gave mice an antibody that blocks interferon-alpha activity several weeks before the animals were expected to develop diabetes. Thwarting interferon-alpha delayed the start of the disease by an average of four weeks, and, in 60 percent of treated mice, it prevented diabetes entirely.

The finding confirmed the importance of interferon-alpha and helped the scientists connect the dots between normal mouse physiology and early diabetes. Mice are born with more pancreatic beta cells than they need, Li noted. The extras soon undergo programmed cell death, leaving plenty of working beta cells to pump out insulin. However, in mice that develop diabetes, debris left behind by the dying cells triggers an inappropriate immune response, with lots of interferon-alpha. The interferon-alpha cues immune destruction of more and more beta cells, causing insulin deficiency and diabetes.

The mechanism may be more complex in humans, the scientists cautioned, explaining that while their new finding goes a long way toward explaining the beginnings of diabetes in the mice, additional genetic and environmental factors influence the human disease. But the basic principle of disease is likely the same in diabetic mice and humans, they said.

"A normal process - programmed cell death - causes a normal response," McDevitt said. "But it does this in such a way that, in a small subset of the population, it starts them on the road to type-1 diabetes."

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>