Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early disease diagnosis could be dramatically improved with new detection system

21.12.2017

The presence of, or changes in the concentration of, certain proteins in biological fluids can be indicators of disease. However, in the early stages of disease these 'biomarkers' can be difficult to detect, as they are relatively rare.

Detecting important biomarkers in lower concentrations will allow patients to be treated earlier for diseases such as some cancers and neurological disorders, which could increase the chance of survival rate.


This is an illustration of the system in action.

Credit: Joshua Edel/Imperial College London

However, current methods of detection are often not sufficiently sensitive and require costly and time-consuming sample pre-treatment.

Now, researchers from the Department of Chemistry at Imperial College London have come up with a system that is specific, flexible, and can detect single protein biomarkers directly in human serum (a pool of fluid separated from blood).

The system represents a significant innovation, as it is more sensitive to specific biomarkers and does not require clinical sample preparation. The method is published in Nature Communications.

Dr Alex Ivanov, co-leader of this study from the Department of Chemistry at Imperial, said: "The detection of single molecules of biomarkers represents the ultimate in sensitivity for early diagnosis. We have now shown that this is possible to perform such measurements in real human samples, opening up the potential for meaningful early diagnosis."

The method the team developed uses the 'backbone' of DNA, the structure it is built around. They grafted 'aptamers' - synthetic DNA molecules that bind to specific target biomarkers - to DNA backbones.

When added to human serum, the aptamers bind to biomarkers before being analysed by passing through a nanopore detector. Nanopores are miniscule holes (often as small as a few billionths of a meter) that measure a change in electrical current as molecules pass through them. Each biomarker has a unique current signature, so the presence and concentration of target biomarkers can be analysed in this way.

The team demonstrated that their system can work by testing three aptamers on one DNA backbone. They found that the nanopores can detect the specific biomarkers that the aptamers were designed to pick up.

They say that the system can be constructed with more than five different aptamers, allowing detection of multiple biomarkers at once. In addition, the biomarkers were detected in human serum, meaning far less preparation time and cost were needed.

Based on the preliminary findings of this study, research efforts are now focused on several types of cancer and neurological disorders, which can benefit from the detection of biomarkers that are in low abundance in clinical samples.

The team have filed a patent for the technology, and are currently exploring routes towards commercialisation so that it can be used to ultimately improve quality of life.

Dr Jasmine Sze, who completed this study as part of her PhD in the Department of Chemistry and has recently moved to the IMED Biotech at AstraZeneca said "Looking forward, with the rapid growth in nanotechnology and nanopore technology, this innovative platform could pave the way for the next wave of clinical applications.

"It has great potential for biomarker discovery, development of companion diagnostics as well as clinical endeavours, such as direct diagnosis, prognosis and sub-type classification with single-molecule sensitivity."

Hayley Dunning | EurekAlert!

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>