Will earlier springs throw nature out of step?

The collaborative study, involving scientists from 12 UK research institutions, universities and conservation organisations, is the most comprehensive and rigorous assessment so far of long-term changes in the seasonal timing (phenology) of biological events across marine, freshwater and terrestrial environments in the UK.

Led by Dr Stephen Thackeray and Professor Sarah Wanless of the Centre for Ecology & Hydrology, the research gathers together more than 25,000 long-term phenology trends for 726 species of plants and animals. More than 80% of trends between 1976 and 2005 indicate earlier seasonal events. The study considers a diverse array of organisms including plankton, plants, insects, amphibians, fish, birds and mammals. On average, the seasonal timing of reproduction and population growth has become earlier by more than 11 days over the whole period, but change has accelerated in recent decades.

The research shows that there are large differences between species in the rate at which seasonal events have shifted. Changes have been most rapid for many organisms at the bottom of food chains, such as plants and the animals that feed upon them. Predators have shown slower overall changes in the seasonal timing of their life cycle events. However, the seasonal timing of reproduction is often matched to the time of year when food supply increases, so that offspring receive enough food to survive. A key question is whether animals higher up the food chain will react to the faster rates of change in the plants and animals they feed upon, or whether they will fail to do so and become less successful at rearing their offspring.

Dr Thackeray said, “This is the first time that data have been analysed with enough consistency to allow a meaningful comparison of patterns of changing seasonal timing in the UK among such a diverse range of plants and animals.”

Professor Wanless said, “It is important to realise that this analysis doesn't identify which predator-prey relationships are most at risk of disruption due to changes in timing. What it does do is highlight that the recorded changes need urgent investigation, particularly for species with high economic or conservation importance.”

Co-author Richard Smithers of the Woodland Trust said, “Phenology is 'the canary in the cage'. The results of this new study make real our changing climate and its potential to have profound consequences for the complex web of life.”

The research was funded by the Natural Environment Research Council and carried out by staff from the Centre for Ecology & Hydrology, Woodland Trust, Butterfly Conservation, University of Cambridge, Rothamsted Research, Marine Scotland, Royal Holloway University of London, Sir Alister Hardy Foundation for Ocean Sciences, Freshwater Biological Association, People's Trust for Endangered Species, British Trust for Ornithology, and the National Pollen and Aerobiology Research Unit University of Worcester. Two of the research team, originally based at the Centre for Ecology & Hydrology, have since moved to Poznan University of Life Sciences in Poland and the Natural Environmental Research Institute in Denmark.

Media Contact

Barnaby Smith EurekAlert!

More Information:

http://www.ceh.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors