Between the ear and brain, an orderly orchestra of synapses

The brain receives information from the ear in a surprisingly orderly fashion, according to a University at Buffalo study scheduled to appear June 6 in the Journal of Neuroscience.

The research focuses on a section of the brain called the cochlear nucleus, the first way-station in the brain for information coming from the ear. In particular, the study examined tiny biological structures called synapses that transmit signals from the auditory nerve to the cochlear nucleus.

The major finding: The synapses in question are not grouped randomly. Instead, like orchestra musicians sitting in their own sections, the synapses are bundled together by a key trait: plasticity.

Plasticity relates to how quickly a synapse runs down the supply of neurotransmitter it uses to send signals, and plasticity can affect a synapse's sensitivity to different qualities of sound. Synapses that unleash supplies rapidly may provide good information on when a sound began, while synapses that release neurotransmitter at a more frugal pace may provide better clues on traits like timbre that persist over the duration of a sound.

UB Associate Professor Matthew Xu-Friedman, who led the study, said the findings raise new questions about the physiology of hearing. The research shows that synapses in the cochlear nucleus are arranged by plasticity, but doesn't yet explain why this arrangement is beneficial, he said.

“It's clearly important, because the synapses are sorted based on this. What we don't know is why,” said Xu-Friedman, a member of UB's Department of Biological Sciences. “If you look inside a file cabinet and find all these pieces of paper together, you know it's important that they're together, but you may not know why.”

In the study, Xu-Friedman and Research Assistant Professor Hua Yang used brain slices from mice to study about 20 cells in the cochlear nucleus called bushy cells, which receive information from synapses attached to auditory nerve fibers.

The experiments revealed that each bushy cell was linked to a network of synapses with similar plasticity. This means that bushy cells themselves may become specialized, developing unique sensitivities to particular characteristics of a sound, Xu-Friedman said.

The study hints that the cochlear nucleus may not be the only part of the brain where synapses are organized by plasticity. The researchers observed the phenomenon in the excitatory synapses of the cerebellum as well.

“One reason this may not have been noticed before is that measuring the plasticity of two different synapses onto one cell is technically quite difficult,” Xu-Friedman said.

Media Contact

Charlotte Hsu EurekAlert!

More Information:

http://www.buffalo.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors