Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018

NIH scientists suspect process aims to curb immune-system hyperactivity

For the first time, scientists have shown that in certain people living with HIV, a type of antibody called immunoglobulin G3 (IgG3) stops the immune system's B cells from doing their normal job of fighting pathogens. This phenomenon appears to be one way the body tries to reduce the potentially damaging effects of immune-system hyperactivity caused by the presence of HIV, according to the investigators, but in so doing, it also impairs normal immune function.


Colorized scanning electron micrograph of a B cell from a human donor.

Credit: NIAID

The research was led by scientists in the Laboratory of Immunoregulation and the Laboratory of Immunogenetics at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

The investigators made their discovery by analyzing blood samples from 83 HIV-uninfected, anonymous donors and 108 people who were living with HIV at various stages of infection. The people living with HIV came from a variety of racial and ethnic backgrounds. Some of these people were being treated for their infection, while others had not yet begun therapy.

The scientists observed that IgG3 appeared on the surface of B cells only under certain conditions. It appeared in people living with HIV, but not in HIV-uninfected people. Also, IgG3 predominantly appeared on B cells of people of African American or black African decent during the chronic phase of untreated HIV infection when the virus was not adequately controlled.

A site on B cells called the B-cell receptor normally binds to foreign entities such as pathogens. This binding stimulates the B cell to produce many copies of the antibody form of the receptor, which can trap a pathogen and mark it for destruction. The scientists found that IgG3 short-circuits this process in certain people living with HIV by docking on the B-cell receptor, blocking it from adequately responding to the pathogen or other intended target. The researchers also demonstrated how other components of the immune system contribute to IgG3 interference with normal B-cell function during HIV infection. Finally, they showed that IgG3 stops binding to B-cell receptors when a chronically infected person starts treatment that controls the virus, illustrating that the IgG3 activity is directly linked to the presence of HIV during chronic infection.

###

ARTICLE: L Kardava et al. Immunoglobulin G3 regulates tissue-like memory B cells in HIV-infected individuals. Nature Immunology DOI: 10.1038/s41590-018-0180-5 (2018).

WHO: Susan Moir, Ph.D., chief of the B-Cell Immunology Unit in the NIAID Laboratory of Immunoregulation, is available for comment.

CONTACT: To schedule interviews, please contact Laura Leifman, (301) 402-1663, laura.sivitz@nih.gov.

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®

Media Contact

Laura S. Leifman
laura.sivitz@nih.gov
301-402-1663

 @NIAIDNews

http://www.niaid.nih.gov 

Laura S. Leifman | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41590-018-0180-5

Further reports about: Allergy B cells B-cell HIV HIV infection Infectious Diseases

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>