Drug used to treat skin conditions is a marine pollutant

“The pharmaceuticals and chemicals in everyday use form a mixture in the ocean that has a direct impact on the growth and reproduction of organisms”, says scientist Tobias Porsbring.

When Euorpean authorities assess environmental risks, they often do so for one chemical at a time. Recent research, however, shows that the hazardous chemicals that humans spread in the environment do not work alone. Chemicals, drugs and personal-care products that accompany wastewater often end up in the oceans, where they form a “cocktail” of chemicals. This “cocktail-effect” may be more harmful than the individual chemicals alone.

Environmental risks

Scientist Tobias Porsbring at the Department of Plant and Environmental Sciences at the University of Gothenburg has studied natural communities of microalgae along the Swedish west coast. He presents results in his doctoral thesis that show how the use of a common agent against skin fungi, clotrimazole, is associated with major environmental risks.

“The levels of clotrimazole that are measured in the environment affect the synthesis of sterols in the algae, and these are important in several functions in the algal cells. The growth and reproduction of the algae are disturbed. Single-cell microalgae are the fundamental basis of the ocean food chain, and the use of clotrimazole thus may affect the complete ocean ecosystem”, says Tobias Porsbring.

“Cocktail effect” on microalgae

Clotrimazole, however, does not act alone in the ocean ecosystem. Many other substances are often found in the oceans, including propranolol (a drug to lower blood pressure), triclosan (an anti-bacterial agent commonly found in soap and deodorants), fluoxetine (an anti-depressant pharmaceutical) and zinc pyrithione (found in anti-dandruff shampoos). The results that Tobias Porsbring presents show that a mixture of such compounds forms a “cocktail effect” that has a direct impact on the growth of the microalgal community.

Theoretical model

The fact that low levels of a pollutant that are insufficient to cause a detectable effect may contribute to a larger, combined effect with other chemicals emphasises that cocktail effects are a real environmental problem. Despite this, assessments of environmental risk are usually carried out on one chemical at a time. Through knowledge of environmental levels and the impact of individual chemicals Tobias Porsbring's thesis launch a theoretical model for calculating how cocktail effects arise. This model can be used to obtain highly reliable estimates of the composite environmental risk from mixtures of chemicals in the ocean ecosystem.

The thesis “On Toxicant-Induced Succession in Periphyton Communities: Effects of Single Chemicals and Chemical Mixtures” was defended at a disputation on 20 March. Tobias Porsbring's supervisor was Professor Hans Blanck.

This doctoral thesis was produced as a collection of papers:
Paper I. Porsbring T, Arrhenius Å, Backhaus T, Kuylenstierna M, Scholze M, Blanck H (2007) The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology 349:299-312
Paper II. Porsbring T, Blanck H, Tjellström H, Backhaus T (2009) Toxicity of the
pharmaceutical clotrimazole to marine microalgal communities. Aquatic Toxicology 91:203-211
Paper III. Porsbring T, Backhaus T, Johansson P, Kuylenstierna M, Blanck H. Mixture toxicity from PSII inhibitors on microalgal community succession is predictable by Concentration Addition. Manuscript
Paper IV. Backhaus T, Porsbring T, Arrhenius Å, Blanck H. Single substance and mixture toxicity of 5 pharmaceuticals and personal care products to marine periphyton communities.

Manuscript

Contact
Tobias Porsbring, Department of Plant and Environmental Sciences, University of Gothenburg
Mobile: 46 704 395676
Work tel: 46 31 786 2626
Home tel: 46 31 707 4507
tobias.porsbring@dpes.gu.se
Press information: Krister Svahn
krister.svahn@science.gu.se
46 (0)31 786 49 12

Media Contact

Helena Aaberg idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors