Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug shows promise against Sudan strain of Ebola in mice

29.08.2014

Antibody therapy could fight second-most deadly strain of virus

Researchers from Albert Einstein College of Medicine of Yeshiva University and other institutions have developed a potential antibody therapy for Sudan ebolavirus (SUDV), one of the two most lethal strains of Ebola. A different strain, the Zaire ebolavirus (EBOV), is now devastating West Africa. First identified in 1976, SUDV has caused numerous Ebola outbreaks (most recently in 2012) that have killed more than 400 people in total. The findings were reported in ACS Chemical Biology.

Between 30 and 90 percent of people infected with Ebola die after experiencing symptoms of the disease that include fever, muscle aches, vomiting and bleeding. In the current EBOV outbreak, at least 1,500 people have died as of the end of August.

Two U.S. aid workers infected in that outbreak received an experimental treatment called ZMapp, a combination of three different monoclonal antibodies that bind to the protein of the virus. The newly described SUDV treatment also uses monoclonal antibodies, in this case synthetic antibodies designed to target a key molecule on the surface of SUDV called the envelope glycoprotein. (A glycoprotein molecule consists of carbohydrates plus a protein).

"While our antibodies show promise for treatment of SUDV infection, they wouldn't work against the EBOV outbreak now underway in West Africa," said Jonathan Lai, Ph.D., associate professor of biochemistry at Einstein and co-corresponding author of the ACS Chemical Biology paper. "That's because antibodies that kill off one strain, or species, of Ebola haven't proven effective against other strains."

In developing their SUDV therapy, the researchers started with specific antibodies made by mice. These antibodies protect the animals against SUDV infection by binding to the envelope glycoprotein on the surface of the virus. But if used in humans, mouse antibodies could provoke an immune response that would destroy them. Needing a "humanized" version of their mouse antibody, the researchers realized that its molecular structure closely resembled the structure of a commonly used human antibody.

The researchers used that human antibody as a scaffold onto which they placed the Ebola-specific portion of the mouse antibody. They then made variants of the resulting molecule by subtly changing its structure in different ways using a process called "synthetic antibody engineering". Two of these variants proved able to fend off SUDV in specially bred mice. "These two monoclonal antibodies represent potential candidates for treating SUDV infection," said Dr. Lai. He noted that more research is needed before the antibody therapy can be tested on humans.

###

The study, titled "Synthetic Antibodies with a Human Framework that Protect Mice from Lethal Sudan Ebolavirus Challenge," was published online in ACS Chemical Biology on August 20, 2014. In addition to Dr. Lai, other co-corresponding authors were John M. Dye, Ph.D., of the United States Army Medical Research Institute of Infectious Diseases, and Sachdev S. Sidhu, Ph.D., of the University of Toronto. Other Einstein authors were Jayne Koellhoffer, B.S., Julia Frei, B.S., Nina Liu, and Kartik Chandran, Ph.D. Additional authors are Gang Chen, Ph.D., Hua Long, Wei Ye, B.Sc., Kaajal Nagar, and Guohua Pan, Ph.D., all of University of Toronto, and Samantha Zak of the U.S. Army.

The study was funded by grants from the National Institute of Allergy and Infectious Diseases, a part of the National Institutes of Health (AI090249, AI088027 and AI09762), the Canadian Institutes for Health Research (MOP-93725) and the Defense Threat Reduction Agency.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2013-2014 academic year, Einstein is home to 743 M.D. students, 275 Ph.D. students, 103 students in the combined M.D./Ph.D. program, and 313 postdoctoral research fellows. The College of Medicine has more than 2,000 full-time faculty members located on the main campus and at its clinical affiliates. In 2013, Einstein received more than $150 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center –- Einstein’s founding hospital, and three other hospital systems in the Bronx, Brooklyn and on Long Island, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.

Kim Newman | Eurek Alert!
Further information:
http://www.einstein.yu.edu

Further reports about: ACS Biology Drug Ebola Einstein Health Medical Medicine Sudan outbreak strain structure variants

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>