Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug may help overwrite bad memories

31.05.2011
Recalling painful memories while under the influence of the drug metyrapone reduces the brain's ability to re-record the negative emotions associated with them, according to a study published in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism.

The study by a team of University of Montreal researchers at the Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital challenges the theory that memories cannot be modified once they are stored in the brain.

"Metyrapone is a drug that significantly decreases the levels of cortisol, a stress hormone that is involved in memory recall," explained lead author Marie-France Marin. Manipulating cortisol close to the time of forming new memories can decrease the negative emotions that may be associated with them. "The results show that when we decrease stress hormone levels at the time of recall of a negative event, we can impair the memory for this negative event with a long-lasting effect," said Dr. Sonia Lupien, who directed the research.

Thirty-three men participated in the study, which involved learning a story composed of neutral and negative events. Three days later, they were divided into three groups – participants in the first group received a single dose of metyrapone, the second received double, while the third were given placebo. They were then asked to remember the story. Their memory performance was then evaluated again four days later, once the drug had cleared out.. "We found that the men in the group who received two doses of metyrapone were impaired when retrieving the negative events of the story, while they showed no impairment recalling the neutral parts of the story," Marin explained. "We were surprised that the decreased memory of negative information was still present once cortisol levels had returned to normal."

The research offers hope to people suffering from syndromes such as post-traumatic stress disorder. "Our findings may help people deal with traumatic events by offering them the opportunity to 'write-over' the emotional part of their memories during therapy," Marin said. One major hurdle, however, is the fact that metyrapone is no longer commercially produced. Nevertheless, the findings are very promising in terms of future clinical treatments. "Other drugs also decrease cortisol levels, and further studies with these compounds will enable us to gain a better understanding of the brain mechanisms involved in the modulation of negative memories."

About the researchers

Marie-France Marin
Doctoral student
Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital
Fernand-Seguin Research Centre of Louis-H. Lafontaine Hospital
University of Montreal's Department of Physiology
Doctoral scholarship, Canadian Institutes of Health Research (CIHR)
Dr. Sonia Lupien
Director, Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital
Director, Fernand-Seguin Research Centre of Louis-H. Lafontaine Hospital
Full Professor, University of Montreal's Department of Psychiatry
Senior Investigator, CIHR Research Chair on Mental Health in Men and Women.
About the study
The University of Montreal is officially known as Université de Montréal. The study received funding from the Canadian Institutes for Health Research and has been published online in the Journal of Clinical Endocrinology & Metabolism.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>