Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How drought-tolerant grasses came to be

24.11.2011
New grass family tree reveals C4 photosynthesis is an evolutionary 1-way street

If you eat bread stuffing or grain-fed turkey this Thanksgiving, give thanks to the grasses — a family of plants that includes wheat, oats, corn and rice. Some grasses, such as corn and sugar cane, have evolved a unique way of harvesting energy from the sun that's more efficient in hot, arid conditions. A new grass family tree reveals how this mode of photosynthesis came to be.


Grasses that use the C4 photosynthetic pathway -- like these tufts of Enneapogon scaber from Namibia -- are particularly good at growing in hot, dry environments. Credit: Photo by study co-author J. Travis Columbus, Rancho Santa Ana Botanic Garden and Claremont Graduate University.

The results may one day help scientists develop more drought-tolerant grains, say scientists working at the U. S. National Evolutionary Synthesis Center.

From the grasslands of North America, to the pampas of South America, to the steppes of Eurasia and the savannas of the tropics, the grass family contains more than 10,000 species, including the world's three most important crops: wheat, rice and corn. We rely on grasses for sugar, liquor, bread, and livestock fodder.

Like all plants, grasses harvest energy from sunlight by means of photosynthesis. But grasses use two strategies that differ in how they take up carbon dioxide from the air and convert it into the starches and sugars vital to plant growth. The majority of grasses use a mode of photosynthesis called the C3 pathway, but many species — especially those in hot, tropical climates — use an alternate mode of photosynthesis known as C4. In hot, arid environments, C4 grasses such as maize, sugar cane, sorghum and millet have a leg up over C3 plants because they use water more efficiently.

An international team of researchers wanted to figure out how many times, and when, the C4 strategy came to be. To find out, they used DNA sequence data from three chloroplast genes to reconstruct the grass family tree. The resulting phylogeny represents 531 species, including 93 species for which DNA sequence data was previously unavailable.

"By working collaboratively across many labs, from the US to Argentina to Ireland to Switzerland — with some people providing new plant material, and others doing the DNA sequencing — we were able to get a lot done in a very short amount of time," said co-author Erika Edwards of Brown University.

The results suggest that the C4 pathway has evolved in the grasses more than 20 separate times within the last 30 or so million years, Edwards said.

What's most surprising, she added, is that C4 evolution seems to be a one-way street – i.e., once the pathway evolves, there's no turning back. "We can't say whether it is evolutionarily 'impossible', or whether there simply hasn't been a good reason to do it, but it seems increasingly unlikely that any C4 grasses have ever reverted to the C3 condition," Edwards said.

"The new tree will be extremely useful for anyone who works on grasses," she added.

For example, scientists are currently trying to engineer the C4 photosynthetic pathway into C3 crops like rice to produce more stress-tolerant plants. By helping researchers identify pairs of closely related C3 and C4 species, the evolutionary relationships revealed in this study could help pinpoint the genetic changes necessary to do that.

"The next challenge is getting these species into cultivation and studying them closely, and ideally, sequencing their genomes," Edwards said.

The results will be published this week in the journal New Phytologist.

CITATION: Grass Phylogeny Working Group II (2011). "New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins." New Phytologist. doi: 10.1111/j.1469-8137.2011.03972.x

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>