Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drought makes Borneo’s trees flower at the same time

22.05.2013
A drought period causes the trees in Borneo’s tropical forests to flower at the same time.

Evolutionary biologists from the University of Zurich have identified two genes that indicate when the plants are about to flower. By monitoring these genes specifically, scientists are better able to predict when mass flowering will occur. This means that plant seeds can be collected in a targeted manner and used for reforestation.


The study species, Shorea beccariana
Picture: UZH


Community-level mass flowering (general flowering) in the Lambir Hills National Park in Borneo 2009 (Malaysia).
Picture: UZH

Tropical plants flower at supra-annual irregular intervals. In addition, mass flowering is typical for the tropical forests in Borneo and elsewhere, where hundreds of different plant timber species from the Dipterocarpaceae family flower synchronously. This phenomenon is all the more puzzling because both temperature and day length are relatively constant all year round due to geographical proximity to the equator. Up to now it was supposed that several weeks of drought may trigger mass flowering in Borneo's forests. However, no empirical data and genetic analyses were available.

An international research team headed up by evolutionary biologists at the University of Zurich has now identified two genes responsible for the flowering of a tropical deciduous tree species Shorea beccariana. After drought periods, the two genes SbFT and SbSVP undergo dramatic transcriptional changes directly before flowering. The researchers can also confirm the flowering functions of these two genes using transgenic Arabidopsis thaliana plants.

85-meter canopy crane necessary for sample collection
The PhD student Masaki Kobayashi, his supervisor Professor Kentaro Shimizu and their Malaysian, Taiwanese and Japanese colleagues collected multiple buds from a single Shorea beccariana tree shortly before the start of flowering. “Given the fact that Shorea is a giant tree, having its crown at 40 meters of height, this sample collection was not easy at all”, says Shimizu. Only with the help of an 85m high canopy crane were they able to collect samples at six different time points over a two-year period. Next, they analyzed the sample material using a next-generation sequencing procedure, which was initially developed for human genome and disease research. In this way, Kobayashi and Shimizu identified 98 genes that are associated with the flowering of the plant ­– including the genes SbFT and SbSVP, which showed transcriptional changes after a drought period and directly before flowering. The scientists then combined their genetic results with the meteorological data of the region. Kobayashi concludes that «Flowering in Shorea beccariana is triggered by a four-week drought in combination with elevated sucrose levels.»
Toward prediction of mass flowering
Climate change will affect the frequency of drought periods and is thus predicted to affect also the frequency of mass flowering. Environmental protection and restoration of the forests have so far been severely hindered by the irregularity of the mass flowering intervals, which are thus difficult to predict. It was never possible to know when the seeds needed could be collected. The genes that have been identified now indicate when mass flowering is about to happen. «Successively monitoring of gene activity can help predict when mass flowering will take place», explains Kobayashi. This will make it possible to coordinate the collection of seeds and improve biodiversity and conservation programs substantially. Kentaro Shimizu and his colleagues will continue to explore these interactions in the newly created University Research Priority Program «Global Change and Biodiversity» at the University of Zurich.

The research was supported by the University Research Priority Programs in Global Changes and Biodiversity, in Systems Biology / Functional Genomics, and SystemsX.ch.

Literature:
Masaki J. Kobayashi, Yayoi Takeuchi, Tanaka Kenta, Tomonori Kume, Bibian Diway, Kentaro K. Shimizu. Mass flowering of tropical tree Shorea beccariana was preceded by expression changes in flowering and drought responsive genes. Molecular Ecology. May 8, 2013. doi: 10.1111/mec.12344
Contact:
Prof. Kentaro K. Shimizu
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 67 40 or 49 70
E-mail: kentaro.shimizu@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>